2
 0
 2
 5
 年
 度

 入
 試
 問
 題
 集

保健医療学部 診療放射線技術学科

大阪物療大学 Butsuryo College of Osaka

目次

	頁
○学校推薦型選抜前期◇基礎学力検査(数学1)····································	1 6
○学校推薦型選抜後期 ◇基礎学力検査(数学I)····································	18
○一般選抜前期 ◇筆記試験(数学 ・Ⅱ)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	23
○一般選抜中期◇筆記試験(数学 I)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	28 33

【問題 1】次の計算をしなさい。なお、解答は解答用紙の問題番号に対応した解答欄にマークしなさい。(良い例: \bigcirc , 悪い例: \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc)

1.
$$\{(-2x^2y^3z^2)^2 \times (-x^3y) + (2x^2yz^3)^2 \div (xz^2)\} \div \{xz \times (-2yz)\}$$

$$= \boxed{7} x^6 y^6 z^2 - \boxed{1} x^2 y z^2$$

4.
$$\sqrt{6+\sqrt{35}} = \frac{\boxed{\text{ty}} + \sqrt{\text{sf}}}{\text{y}}$$

$$ttl, \sqrt{\text{ty}} < \sqrt{\text{sf}}$$
 とする。

5.
$$\frac{\sin 30^{\circ} \cos 60^{\circ}}{\tan 60^{\circ}} = \frac{\sqrt{7}}{\boxed{7}}$$

【問題2】次の空欄を埋めなさい。なお、解答は解答用紙の問題番号に対応した解答

欄にマークしなさい。(良い例:lacktriangle, 悪い例:lacktriangle0lacktriangle0lacktriangle0)

1. $3x^2 + 13x - 18xy - 24y + 12$

2. 3 つの整数x, y, zが, x + y + z = 5, $x^2 + y^2 + z^2 = 21$, xyz = -8 を満たすとき,

$$x^3 + y^3 + z^3 =$$
 オカ である。

3. $\sin\theta + \cos\theta = 1 + \frac{\sqrt{2}}{4}$ のとき $(0 < \theta < 90^{\circ}$ とする),

4. x に関する 2 次方程式 $a^2x^2 - 2a$ $x + \frac{1}{4}(-a^2 + 2a + 12) = 0$ $(a \neq 0$ とする)が、解をもつとき a の範囲は

$$a \leq \boxed{f y}$$
 state $a \geq \boxed{f}$ respectively.

$$a = \begin{bmatrix} f & \mathcal{Y} \end{bmatrix}$$
 の時の解は, $x = -\frac{\mathbf{F}}{\mathbf{F}}$

5. 不等式 $|x^2 - 2x| < 2x + 1$ を満たすx は,

$$\boxed{ }$$
 $\sqrt{ }$ $\sqrt{ }$

【問題3】次の空欄を埋めなさい。なお、解答は解答用紙の問題に対応した解答欄にマークしなさい。(良い例: \bigoplus ,悪い例: \bigotimes \bigotimes \bigotimes \bigotimes \bigotimes \bigotimes \bigotimes

1. 三角形 ABC において辺 AB, BC, CA の長さがそれぞれ 6, 8, 10 であるとき,

この三角形の面積は **アイ** , 外接円の半径は **ウ** である。

2. 三角形 ABC において、 $\sin A = \frac{1}{\sqrt{3}}$, $AB = \sqrt{3}$, $CA = 2\sqrt{2}$ であるとき、

BC = $\sqrt{\frac{\pi}{2}}$ robos. π sin π = $\frac{\pi}{2}$ robos.

この三角形の面積は $\sqrt{}$ である。ただし, $0 < A < 90^\circ$, $0 < B < 90^\circ$ とする。

3. 全体集合を U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} とし,

U の部分集合 $A = \{2, 3, 4, 5, 8\},\$

 $B = \{1, 3, 6, 7, 10\},\$

 $C = \{3, 4, 6, 8, 9\}$ を考えると,

UCの要素の数は コ である。

また、 $A \cap B \cap C = \{ \ \ \ \ \ \ \ \ \ \}$ 、 $(\overline{A \cup B}) \cap C = \{ \ \ \ \ \ \ \ \ \}$ 、

 $\overline{(A \cap C) \cup B} = \{4, \quad \boxed{\lambda} \}$ である。

4. 表 1 のデータは、20 点満点のテストを受けた生徒のうち 10 人の得点の標本である。 この標本から以下の問いに答えなさい。

表 1 生徒 10人の得点

生徒番号	1	2	3	4	5	6	7	8	9	10
得点	10	12	11	10	10	8	15	6	12	16

(-)	23 加丁3次次置13	 /// C 00 /)	1 15 151	, ,	/// C 0/2 0/2

(1) この標本の最頻値は **セソ** 点であり 平均値は **タチ** 点である

(2)この標本 の分散は	ッ	であり,標準偏差	は テ	√[
である。					

5. 容器 A, B, C にそれぞれ 100g, 120g, 80g の砂糖水が入っていた。

容器 B, C に入っていた砂糖水の濃度はそれぞれ 6%, 9%であったことが分かっている。容器 A, B, C からそれぞれ 20g, 30g, 50g の砂糖水をとり,

別の容器 D に入れてよくかき混ぜたとき,砂糖水の濃度は8%になった。このとき,

次に、容器 D から 20g の砂糖水を取り出して容器 A に戻すと、

容器 A の砂糖水の濃度は **ヌ** . **ネ** %になった。

【問題 4】次の空欄を埋めなさい。なお,解答は解答用紙の問題に対応した解答欄にマークしなさい。(良い例: \bigoplus , 悪い例: \bigotimes \bigvee \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 0) 放物線 $y=-x^2+3ax-x+3a$ について考える。以下の問いに答えなさい。 ただし,a は正の実数とする。

(1) この放物線の頂点の座標は

$$\left(\begin{array}{c|c} \hline P \\ \hline A \end{array}\right) - \left(\begin{array}{c|c} \hline J \\ \hline A \end{array}\right) + \left(\begin{array}{c|c} \hline J \\ \hline J \end{array}\right) + \left(\begin{array}{c|c} \hline J \\ \hline J \end{array}\right) + \left(\begin{array}{c|c} \hline J \\ \hline J \end{array}\right) = \left(\begin{array}{c|c} \hline J \end{array}\right)$$

この放物線をx軸方向に12だけ平行移動し、さらに原点に関して

対称移動して得られる放物線は、もとの放物線を原点に関して

対称移動してから x 軸方向に **サシス** だけ平行移動して得られる放物線 と同一である。

(2) もとの放物線のx軸との交点は,x座標の小さい順に

$$($$
 $\boxed{ extbf{ty}}$ $, 0), ($\boxed{ extbf{y}}$ $a, 0)$ である。また y 軸との交点は $(0, \boxed{ extbf{f}}$ a) である。$

この三角形が直角三角形になるのは $a = \begin{bmatrix} \mathbf{z} \\ \mathbf{z} \end{bmatrix}$ のときである。

また、この三角形が二等辺三角形になるのは、

学校推薦型選抜前期 基礎学力検査(生物)

		次の各文 (1) \sim (8) において $\boxed{1}$ \sim $\boxed{8}$ に入れるのに最も適当な つ選びなさい。
(1)	細 ① ② ③ ④ ⑤	胞に関する記述のうち、正しいものはどれか。 1 原核細胞は葉緑体をもつ。 真核細胞は細胞膜をもたない。 細菌は核をもつ。 植物細胞はミトコンドリアをもつ。 動物細胞は細胞壁をもつ。
(2)	① ② ③	製が終了し、細胞あたりの DNA 量が 2 倍になる時期はどれか。 2 G ₀ 期 G ₁ 期 G ₂ 期 G ₃ 期 M 期
(3)	① ② ③ ④	NA を構成する成分として誤っているものはどれか。 3 ウラシル シトシン グアニン リン酸 デオキシリボース

(4)	DN	IA の特定の塩基配列を認識して切断する酵素はどれか。 4 1
	1	DNA リガーゼ
	2	DNA ヘリカーゼ
	3	RNA ポリメラーゼ
	4	制限酵素
	⑤	脱水素酵素
(5)	遺	伝暗号表でアミノ酸を指定する塩基配列はどれか。 5
	1	ラドン
	2	コドン
	3	トロン
	4	ヒストン
	⑤	カーボン
(6)	~°	プチド結合に必要な残基はどれか。 6
	1	アミノ基とカルボキシ基
	2	メチル基とアミノ基
	3	リン酸基とカルボキシ基
	4	リン酸基とメチル基
	⑤	システイン残基どうし
(7)	細	胞呼吸で1分子のグルコースから産生されるのはどれか。 7
	1	6分子の酸素
	2	6 分子の水
	3	6 分子の乳酸
	4	6分子のエタノール
	⑤	6 分子の二酸化炭素

(8)	ホノ	ルモンは特定の器官に作用するが、	この器官にあるホルモンをうけとる
	細胞	回はどれか。 8	
	1	樹状細胞	
	2	標的細胞	
	3	肥満細胞	
	4	母細胞	
	⑤	食細胞	

【問	2]	次の各文(1) \sim (7)において $\boxed{1}$ \sim $\boxed{7}$ に入れるのに最も適当な
\$00	を	1 つ選びなさい。(8)の 8 に入れるのに最も適当なものを2つ選び
なさ	ر با تا	
(1)	自	律神経の最高中枢はどこにあるか。 1
	1	大 脳
	2	脳幹
	3	視床下部
	4	視床
	⑤	副腎皮質
(2)	ヒ	トの心臓の説明について、誤っているものはどれか。 2
	1	左心室は全身に血液を送り出す部屋である。
	2	血液は心室から送り出され、心房で受け入れる。
	3	肺循環のルートは右心室を起点とし、左心房を終点とする。
	4	心房は直下の心室に血液を送る。
	⑤	左右の心房と心室の間に弁膜が存在しない。
(3)	ヨ	ウ素を含むホルモンはどれか。 3
	1	インスリン
	2	チロキシン
	3	セロトニン

4 グルカゴン

⑤ アドレナリン

	1	タンパク質
	2	ナトリウム
	3	ブドウ糖
	4	イヌリン
	⑤	酵 素
(5)	消	化器系に属する臓器はどれか。 5
	1	心 臓
	2	ひ臓
	3	腎臓
	4	すい臓
	⑤	肺 臓
(6)	^	モグロビンのもっとも重要な働きはどれか。 6
(0)	• `	C/· CV V/ U/C U主女は閉じはCAVA 0
(0)	0	栄養分を運ぶ。
(0)	_	
(0)	0	栄養分を運ぶ。
(0)	0	栄養分を運ぶ。酸素を運搬(うんぱん) する。
(0)	① ② ③	栄養分を運ぶ。 酸素を運搬(うんぱん)する。 免疫反応に関与する。
(0)	① ② ③ ④	栄養分を運ぶ。 酸素を運搬(うんぱん)する。 免疫反応に関与する。 アンモニアを尿素に変える。
(7)	① ② ③ ④ ⑤	栄養分を運ぶ。 酸素を運搬(うんぱん)する。 免疫反応に関与する。 アンモニアを尿素に変える。
	① ② ③ ④ ⑤	栄養分を運ぶ。 酸素を運搬(うんぱん)する。 免疫反応に関与する。 アンモニアを尿素に変える。 血液を凝固させる働きに関与する。
	① ② ③ ④ ⑤	栄養分を運ぶ。 酸素を運搬(うんぱん)する。 免疫反応に関与する。 アンモニアを尿素に変える。 血液を凝固させる働きに関与する。 感神経のはたらきはどれか。 7
	① ② ③ ④ ⑤	 栄養分を運ぶ。 酸素を運搬(うんぱん)する。 免疫反応に関与する。 アンモニアを尿素に変える。 血液を凝固させる働きに関与する。 感神経のはたらきはどれか。 心臓の拍動を抑制する。
	① ② ③ ④ ⑤ 交 ① ②	栄養分を運ぶ。 酸素を運搬(うんぱん)する。 免疫反応に関与する。 アンモニアを尿素に変える。 血液を凝固させる働きに関与する。 感神経のはたらきはどれか。 「フ 心臓の拍動を抑制する。 気管支を収縮させる。

(4) 原尿量の計算に最も使われる物質はどれか。 **4**

- (8) 横紋筋であるのはどれか。**2つ選びなさい**。 8
 - ① 胃腸筋
 - ② 心 筋
 - ③ 平滑筋
 - 4 骨格筋
 - ⑤ 血管壁筋

【問3】各問いについて答えなさい。

(1)	次の酵素の性質や構造について 1		\sim 5	を 選択肢 から	1 つ選びな
` /		_		© <u>ÆI//IIX</u> ~ ⊃	1 220 6
さい	``				
1)	酵素が特定の物質のみに作用する性	E質)		1
2)	酵素のタンパク質が変性し、酵素が	ぶは	たらきを失	うこと。	2
3)	酵素と似た構造をもつ物質が酵素反	応	を阻害する。	こと。	3
4)	酵素が基質と結合し, 化学反応を促	進	する部分のこ	こと。	4
5)	過酸化水素を酵素と水に分解する酵	素	の名称。		5
選扎	<u>尺肢</u>				
1	欠 失	0	競争的阻害		
2	失 活	8	非競争的阻	害	
3	生成物 (9	アロステリ	ック酵素	
4	相補性	10	ペプシン		
⑤	活性部位	11)	カタラーゼ		
6	基質特異性	12	アミラーゼ		

(2)	次の文章中の 6 ~ 10	に入	る語を <u>選択肢</u> から1つ選びなさい。
Rì	NA の転写は細胞小器官の 6	で行	われる。 転写された RNA には,タン
パク	質の情報となる部分の 7 と	情報	Bとならない部分の 8 が含まれ
る。]	RNA は mRNA に成熟する時に不	要な	情報部分の 8 を切り離す。この
こと	を 9 と呼ぶ。 9 が起こ	<u>-</u> り原	対熟した mRNA は 10 を通って
細胞	質へと運ばれてタンパク質の合成	に使	われる。
<u>選択</u>	<u>.肢</u>		
1	イントロン	0	スプライシング
2	エキソン	8	核膜孔
3	エプロン	9	ゴルジ体
4	複製	0	核
⑤	折りたたみ構造	(1)	細胞質基質
6	S-S 結合	12	ミトコンドリア

(4) 次の文章中の 17 ~ 23	に入る語を <u>選択肢</u> から1つ選びなさい
真核細胞には、様々な小器官が存在	Eする。 17 は染色体を含み細胞のに
たらきを調整するタンパク質の合成を	と指令している。タンパク質は 17 0
膜に繋がる 18 の表面に付着する	る 19 で合成される。合成されたタ
ンパク質は 18 を通り, 20] に運ばれ加工され,小胞に包まれ細胞外
など必要な場所へ輸送される。これら	の生命活動に必要なエネルギーは細胞呼
吸で作られる。 21 はエネルギー	一源となる 22 を合成する。 22
は化学エネルギーを必要な場所で供給	合したり、蓄えたりすることができる。
生命活動を行っている細胞は液体で	で満たされており、様々な化学反応を行っ
ている。この液体のことを 23 と	という。
選択肢	
① 液 胞	◎ 核
② 小胞体	サイトゾル
③ リポソーム	9 葉緑体
④ リボソーム	() ATP
⑤ ミトコンドリア	(f) ADP

2 エネルギー通貨

6 ゴルジ体

【問4】各問いについて答えなさい。

(1) 下	記の文を読み, 対	て中の 1 ~	<u>7</u> にあてはま	る語句を <u>選択肢</u> 【1】
~ [7]	】のそれぞれ ① ~	- 4から1つ選び	なさい。	
白血	1球は免疫の主役	である。その中,	1 が白血球の	6割を占める細胞で
ある。	また,血管から約	且織に移動して、	細菌を取り込んで食	べるはたらきを持つ
細胞を	2 という。	3 は,血液	変中では単球という	白血球の1種に属す
るが,	ウイルスや死んだ	ど細胞などを取り	込んで分解する「弦	歯力な掃除機」のよう
な役害	川が特徴である。·	そして, 樹状細胞	は、病原体などを耳	文り込む 2 に属
してい	いるが, 主なはたら	らきはその病原体	の特徴を免疫細胞で	である 4 に伝え
て,	5 を行う。	2 は、さまざ	まな 6 を認識	はする 7 を持っ
ている	ために、幅広い	病原体を排除する	らことができる。	
選択肢	<u> </u>			
[1]	①好中球	2好酸球	3好塩基球	4 単 球
[2]	① 母細胞	②娘細胞	③食細胞	4 腺細胞
[3]	①好中球	2免疫細胞	③マクロファージ	④ ヘモグロビン
[4]	①顆粒球	②グロブリン	③B 細胞	④ T 細胞
[5]	①抗体産生	②抗原提示	③ 殺傷作用	4分解作用
[6]	①本 物	②本 質	③ 異 質	④ 異 物
[7]	① 受容体	② 輸送体	3細胞内器官	④ 活動電位

(2)	次の文章中の 8 ~ 10 1	こ入る	語句を <u>選択肢</u> から1つ選びなさい。
<u>ш</u> .	液の中に含まれる 8 のこと	を血粉	糖という。血糖値が正常値 100mg
/1001	mL 程度に保たれているからこそ,	ヒト	の細胞はいつでも 8 を取り入
ħ,	9 へと変えることができる。	だから	b, 血糖は体にとっては燃料にあた
る大	:切なものである。食事で消化・吸	ぬ収さ	れた血糖は,必要に応じて肝臓で
10	0 として貯蔵され、血糖が不足し	たと	きには再び 8 になって血液中
に放	:出される。血糖は 10 に変え	られ,	筋組織にも貯蔵される。
選択	<u>.肢</u>		
1	ビタミン	0	脂肪
2	酵 素	8	グリコーゲン
3	ヴァイタリティ	9	タンパク質
4	グルコース	0	マルトース
⑤	ホルモン	0	スクロース
6	インスリン	12	エネルギー
(3)	次の文章中の 11 に入る語句	Jを <u>選</u>	<u>択肢</u> から1つ選びなさい。
カュ	らだには,血管の破れをふさぎ,血	を止	める働きがある。まず、血管の破れ
に血	液中の血小板と呼ばれる血球が集る	まって	きて、破綻(たん)部分をふさぐ。
これ	が一次止血で, 11 が作られ	る。糸	町い血管の場合, これでも充分な止
血効	果があるという。		
<u>選択</u>	<u>.肢</u>		
1	血べい	4	線維素
2	凝集素	⑤	血小板血栓
3	血しょう	6	凝固因子

【問題 1】次の計算をしなさい。なお、解答は解答用紙の問題番号に対応した解答欄にマークしなさい。(良い例: \bigcirc , 悪い例: \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc)

2.
$$(x+y+z)(x-y-z)$$

= x^2 コ y^2 サ z^2 シス yz

3.
$$2 + \frac{1}{1 + \frac{3}{2a}} = \frac{2 \cdot (a + y)}{3 \cdot a + 5}$$

4.
$$\left(\sqrt{3} + \sqrt{7}\right)^2 = \boxed{97} + \boxed{5} \sqrt{7} = \boxed{7}$$

5.
$$\frac{\sin 45^{\circ} \cdot \sin 30^{\circ}}{\tan 60^{\circ}} = \frac{\sqrt{\boxed{x}}}{\boxed{x}}$$

【問題 2】次の空欄を埋めなさい。なお、解答は解答用紙の問題番号に対応した解答欄にマークしなさい。(良い例:lacktriangle, 悪い例:lacktriangle)

2.
$$x + y = 6$$
, $xy = 4$ とすると, $x^2 + y^2 =$ **エオ** となる。

3.
$$\sin \theta = \frac{1}{3} \text{ vbabbe} (0 < \theta < 90^{\circ} \text{ bbabb}),$$

4. aを実数とし,xの 2 次不等式 x^2-2 $x+a^2-6a \le 0$ ・・・①について考える。

x = 4 のとき,①を満たすようなaの範囲は, \forall $\exists a \leq v$ である。

x = 1 のとき,①を満たすようなaの範囲は,

aを整数とするとき、①を満たす正の整数xが3個であるとき、

整数aが取りうる値の個数は \bigcirc である。

5. 不等式
$$x^2-1>3x-3$$
 を満たす x は, $x<$ $\boldsymbol{\mathcal{F}}$, $x>$ $\boldsymbol{\mathcal{Y}}$ である。

【問題3】次の空欄を埋めなさい。なお、解答は解答用紙の問題に対応した解答欄にマークしなさい。(良い例: \bigcirc , 悪い例: \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

1.	三角形 ABC において	, $AB = 2$, $CA = 4$	$4, \angle A = 6$	0 °のとき,	
	定理を用いると,辺」				
また	正弦定理を用いると,	sin B の値 は ウ	, sin C	の値は エ	となる。

2. 三角形 ABC において、AB = 12、BC = 13、CA = 5 であるとき、ヘロンの公式を用いて、この三角形の面積は カキ となる。
 内接円の半径は ク である。

4. 表1のデータは、ある高等学校の生徒のうち8人の身長の標本である。 この標本から以下の問いに答えなさい。

表 1 生徒 8 人の身長(単位:センチメートル)

生徒番号	1	2	3	4	5	6	7	8
身長	168	154	184	150	164	160	168	180

- (1) この標本の中央値は **セソタ** である。
- (3)この標本 の分散は **トナニ** であり,標準偏差は **ヌネ** である。
- 5. 容器 A には 120g, 容器 B には 100g の砂糖水が入っている。

容器 A と容器 B に入っている砂糖水の濃度はそれぞれ 10%と 8%であるとすると,

それぞれの容器に入っている砂糖の量は $oldsymbol{J}$ $oldsymbol{N}$ $oldsymbol{g}$, $oldsymbol{L}$ $oldsymbol{g}$ $oldsymbol{\sigma}$ $oldsymbol{g}$

【問題 4】次の空欄を埋めなさい。なお,解答は解答用紙の問題に対応した解答欄にマークしなさい。(良い例: \bigoplus , 悪い例: \bigotimes \bigodot \bigoplus) か物線 $y=-x^2+6ax-5a^2$ について考える。以下の問いに答えなさい。ただし,a は正の実数とする。

(1) この放物線の頂点の座標は

a が変化するとき頂点が描く図形の方程式は

$$y =$$
 x x x x $x > 0) である。$

この三角形が直角二等辺三角形になるのは
$$a =$$
 y のときである。

また、この三角形が正三角形になるのは $a = \frac{\sqrt{2}}{2}$ のときである。

(4) もとの放物線が直線 $y=3a^2$ から切り取る線分の長さは y a である。 また、もとの放物線が直線 $y=x-5a^2$ から切り取る線分の長さが

【問題 1】次の計算をしなさい。なお、解答は解答用紙の問題番号に対応した解答欄にマークしなさい。(良い例: \blacksquare , 悪い例: \boxtimes \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

3.
$$\frac{a+2}{2a-\frac{3}{a}}+1=\frac{2a^2+2a^2-3}{2a^2-3}$$

4.
$$\left| \sqrt{3} - \left| 3\sqrt{3} - 2\sqrt{7} \right| \right| = \boxed{3} \sqrt{3} - \boxed{4}$$

5.
$$\log_3 \sqrt[5]{81} \cdot \log_2 \frac{1}{\sqrt[5]{128}} = -\frac{$$
 シス セソ

6.
$$\left(\frac{64}{125}\right)^{\frac{1}{3}} + \left(\frac{27}{343}\right)^{-\frac{1}{3}} = \boxed{\frac{\cancel{\cancel{57}}}{\cancel{\cancel{57}}}}$$

【問題 2】次の空欄を埋めなさい。なお、解答は解答用紙の問題番号に対応した解答欄にマークしなさい。(良い例:lacktriangle)、悪い例:lacktriangle0 lacktriangle0 lacktriangle1 lacktriangle0 lacktriangl

- 3. x の 2 次方程式 $x^2 4ax + 4a + 2 = 0$ が重解をもつとき,

- 4. 積分方程式 $f(x) = x^2 + 2x + \int_{-1}^2 f(t)dt$ を解くと, $f(x) = x^2 + \boxed{ + \boxed{ + \boxed{ } } x \boxed{ \flat }}$ である。
- 5. $f(x) = (x+5)^3$ を微分すると,

6. 200g の水に **タチ** g の砂糖を溶かした砂糖水 A と、濃度が砂糖水 A の 4 分の 1 である砂糖水 B がある。100 g の砂糖水 A に 200 g の砂糖水 B を混ぜ合わせると 10% の砂糖水になる。

【問題 3】以下の問いに答えなさい。なお、解答は解答用紙の問題番号に対応 した解答欄にマークしなさい。(良い例:lacktriangle, 悪い例:lacktriangle)

- 1. ある放射性原子核が 1 秒毎に半減する。初期時刻 t=0 にこの原子核数が N_0 である。
 - (1) t = 8秒におけるこの放射性原子核の個数は

(2) この放射性原子核の個数が N_0 の 20000 分の 1 になる時刻を t_1 秒とする。

 t_1 の整数部分をn秒とすると、このとき以下の不等式が成り立つ。

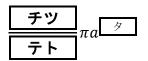
$$\frac{1}{2^n} > \frac{1}{20000} > \frac{1}{2^{n+1}}$$

これより,次式が得られる。

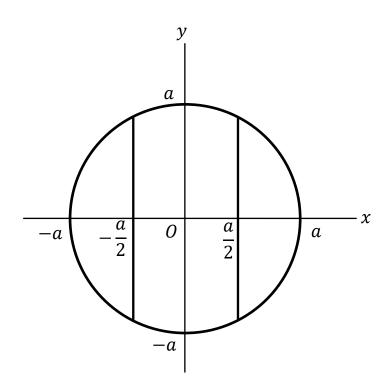
よって $\log_2 10 = 3.32$ なので n = カキ と求まる。

2. 半径aの円を考える。下図のように、(x,y)平面上の原点を中心としてこの円を描くと、この円上の各点は曲線

$$x \rightarrow + y \rightarrow = a \rightarrow$$


上に存在する。

この円をx軸を中心に回転させて得られる球体を考えると、 球体の体積は、


$$\boxed{ + \int_0^a \left(a^{2} - x^{2} \right) dx = \boxed{ + \int_0^a \left(a^{2} - x^{2}$$

となる。

また、この円の $-a/2 \le x \le a/2$ の部分のみを切り出してx軸を中心に回転させたときに得られる立体の体積は、同様の計算により、

となる。

【問題4】以下の問いに答えなる	さい。なお,	解答は解答用紙の問題番号に対応
した解答欄にマークしなさい。	(良い例:●),悪い例:及 Ø 🌘 🔘 🛡)

放物線 $y = x^2 - 2x + 2$ について考える。

- 2. この放物線と y 軸の交点の座標は $\Big(left \begin{tabular}{c} left \end{tabular} left, left left \begin{tabular}{c} left \end{tabular} \Big)$ である。

この交点を放物線の軸に関して対称移動した点の座標は

(**オ**, **カ**)である。

y=0 とおいた x の 2 次方程式の判別式の値は **キク** であるから この放物線は x 軸と交点を持たない。

3. この放物線に傾き2の接線をひいたとき,

接点の座標は(ケ , コ),

接線の方程式は y = 2x - **サ** である。

この接線と放物線、および γ 軸で囲まれる部分の面積は

<u>う</u> である。

4. この放物線に原点を通って傾きが正の接線をひいたとき,

一般選抜中期

筆記試験(数学 I)

【問題 1】次の計算をしなさい。なお、解答は解答用紙の問題番号に対応した解答欄にマークしなさい。(良い例: \bigcirc , 悪い例: \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

1.
$$(-2xy)^2(3x^2 - 2y + 4)$$

= $\mathbf{r} \cdot \mathbf{x}^4 y^2 - \mathbf{r} \cdot \mathbf{x}^2 y^3 + \mathbf{r} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{y} \cdot \mathbf{x}^4 y^2 - \mathbf{r} \cdot \mathbf{x}^4 y^2 + \mathbf{r} \cdot \mathbf{x} \cdot \mathbf{x}^4 y^2 + \mathbf{r} \cdot \mathbf{x}^4 y^2 + \mathbf{r}$

3.
$$1 + \frac{2}{2 + \frac{5}{2a}} = \frac{2}{2a} = \frac{2$$

4.
$$\left(\sqrt{6} + \sqrt{10} \right)^2 = \boxed{\mathbf{97}} + \boxed{\mathbf{y}} \sqrt{\boxed{\mathbf{7}}\mathbf{F}}$$

5.
$$\frac{\sin 45^{\circ} \cdot \cos 30^{\circ}}{\tan 60^{\circ}} = \frac{\sqrt{\boxed{+}}}{\boxed{=}}$$

【問題 2】次の空欄を埋めなさい。なお、解答は解答用紙の問題番号に対応した解答欄にマークしなさい。(良い例:lacktriangle)、悪い例:lacktriangle0 lacktriangle0)

1.
$$3x^2 + 2x - 7xy - 6y^2 + 16y - 8$$

= $(x - y)(3x + y)$

2.
$$x+y=3$$
, $xy=2$ を満たすとき $x^3+y^3=$ **オ** である。

3.
$$\sin\theta + \cos\theta = \frac{\sqrt{5}}{2}$$
 のとき(ただし、 $45^{\circ} \le \theta \le 90^{\circ}$ とする),

$$\sin\theta\cos\theta = \frac{1}{2}, \quad \sin\theta - \cos\theta = \frac{1}{2},$$

$$\sin^3\theta + \cos^3\theta = \frac{7}{2}, \quad \cos^3\theta = \frac{1}{2},$$

4. x に関する 2 次方程式 $x^2 - 2ax + 5a - 4 = 0$ が実数解を持つためには、

a = のときこの 2 次方程式は重解を持ち、解は x = **ツ** である。

a = v のときもこの v 次方程式は重解を持ち、解は v v v である。

5. $x^2 + 2 < 3|x|$ のとき,

チツ < x < **テト** , または **ナ** < x < **ニ** である。

【問題3】次の空欄を埋めなさい。なお、解答は解答用紙の問題に対応した解答欄にマークしなさい。(良い例: \bigcirc , 悪い例: \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

1. 三角形 ABC において AB = 3, $\angle B = 45$ °, $\angle C = 30$ °のとき,

辺 AC の長さは $m{r}$ $\sqrt{m{1}}$,外接円の半径 R は $\bar{m{r}}$ である。

2. 三角形 ABC において、BC=7, AB=8, $\angle A = 60^{\circ}$ のとき、

3. 1以上で20以下の整数の集合で,

 $A = \{30 \text{ の約数}\}, B = \{\text{偶数}\}$ とすると、

A の要素の数は **コ** , B の要素の数は **サシ**

 $\overline{A \cup B}$ の要素の数は \overline{A} である。

4. 表 1 のデータは、生徒 10 人のテストの点数を示したものである。 これらのデータから以下の問いに答えなさい。

表1 テストの点数

生徒	1	2	3	4	5	6	7	8	9	10
点数	40	60	80	90	65	55	70	65	45	80

データの平均点は **セソ** 点である。

データの分散は **タチツ** である。

データの標準偏差は **テト** 点である。

データの中央値は **ナニ** 点である。

データの四分位範囲は ヌネ である。

5. 2種類の砂糖水 A, B があり, A の濃度は B の 2 倍である。

いま, A 200g と B 100g を混ぜると 15%の砂糖水ができた。

このとき, 砂糖水 B の濃度は / %である。

【問題4】次の空欄を埋めなさい。なお、解答は解答用紙の問題に対応した解答欄に
マークしなさい。(良い例:●, 悪い例:🛇 🛭 🕞 🔘 🕩)
放物線 $y=x^2-4ax+4a^2-9$ について考える。以下の問いに答えなさい。
ただし, a は正の実数とする。

(1) この放物線の頂点の座標は

この放物線を,x 軸方向に x a だけ平行移動してから

原点に関して対称移動し、さらに y 軸方向に $\boxed{$ **カキ** $}$ だけ平行移動して得られる放物線の方程式は $y=-x^2$ である。

- (2) この放物線が x 軸 から切り取る線分の長さは $\boxed{ 2}$ である。 また、この放物線と直線 y=27 との 2 つの交点と、原点とで形成される 三角形の面積は $\boxed{ 7 \ 7 \ 7 }$ である。この三角形が二等辺三角形になるのは $a=\boxed{ 2 }$ のときである。
- (3) この放物線の $0 \le x \le 1$ における y の最小値は,

$$a=-1$$
, $\frac{1}{4}$, 1 のときそれぞれ $\boxed{$ スセ $\end{bmatrix}$, $\boxed{$ $\boxed{ }$ $\boxed{ }$

一般選抜中期 筆記試験(生物)

各問いについて答えなさい。なお、解答は解答用紙の問題に対応した解答欄にマークしなさい。(良い例: \blacksquare , 悪い例: \bigotimes \bigotimes \bigotimes \bigotimes \bigotimes \bigotimes

【問 1】次の各文(1)~(8)において 1 ~ 8 に入れるのに最も記しまのを1つ選びなさい。 (1) DNA の塩基について正しいのはどれか。 1 ① G (グリシン) と結合するのは A (アデニン) である。② C (シトシン) と結合するのは C (シトシン) である。③ T (チミン) と結合するのは T (チミン) である。④ A (アデニン) と結合するのは T (チミン) である。⑤ G (グリシン) どうしが結合する。 (2) ナトリウムーカリウムポンプの輸送はどれか。 2 ① 能動輸送 ② 受動輸送 ③ 小胞輸送 ④ 浸 透 ⑤ 拡 散 (3) 酸素を用いて有機酸を分解し ATP を合成する細胞小器官はどれか。 ① 核 ② ゴルジ体 ③ サイトゾル ④ 小胞体 ⑤ ミトコンドリア	ーク	した	なさい。(良い例:● , 悪い例:\ ∅
 ① G (グリシン) と結合するのは A (アデニン) である。 ② C (シトシン) と結合するのは U (ウラシル) である。 ③ T (チミン) と結合するのは C (シトシン) である。 ④ A (アデニン) と結合するのは T (チミン) である。 ⑤ G (グリシン) どうしが結合する。 (2) ナトリウムーカリウムポンプの輸送はどれか。 ② 受動輸送 ③ 小胞輸送 ④ 浸 ⑤ 拡 散 (3) 酸素を用いて有機酸を分解し ATP を合成する細胞小器官はどれか。 ① 核 ② ゴルジ体 ③ サイトゾル ④ 小胞体 			
 ① 能動輸送 ② 受動輸送 ③ 小胞輸送 ④ 浸 透 ⑤ 拡 散 (3) 酸素を用いて有機酸を分解しATPを合成する細胞小器官はどれか。 ① 核 ② ゴルジ体 ③ サイトゾル ④ 小胞体 	(1)	① ② ③ ④	G (グリシン) と結合するのは A (アデニン) である。 C (シトシン) と結合するのは U (ウラシル) である。 T (チミン) と結合するのは C (シトシン) である。 A (アデニン) と結合するのは T (チミン) である。
 核② ゴルジ体③ サイトゾル④ 小胞体	(2)	① ② ③ ④	能動輸送 受動輸送 小胞輸送 浸 透
•	(3)	① ② ③	核 ゴルジ体 サイトゾル 小胞体

(4)	グ	ルコースの解糖系が行われる細胞小器官はどれか。 4
	1	核
	2	ゴルジ体
	3	サイトゾル
	4	小胞体
	⑤	ミトコンドリア
(5)	酵-	母が行うグルコースの発酵で生成されるのはどれか。 5
	1	アミラーゼ
	2	スクロース
	3	乳酸
	4	エタノール
	⑤	プロパノール
(6)	遺	伝の法則を発見したのはだれか。 6
	1	シャルガフ
	2	ワトソンとクリック
	3	フック
	4	パスツール
	⑤	メンデル
(7)	複	製時に DNA を結合する酵素はどれか。 7
	1	DNA リガーゼ
	2	DNA ヘリカーゼ
	3	DNA ポリメラーゼ
	4	DNA プライマーゼ
	(5)	DNA イソメラーゼ

- (8) 父方と母方に由来する同じ形・大きさの1対の染色体はどれか。 8

 - 2 相同染色体

① 娘染色体

- ③ 常染色体
- 4 二価染色体
- 6 性染色体

【問	2]	次の各文(1) \sim (8)において $\boxed{1}$ \sim $\boxed{8}$ に入れるのに最も適当な			
ものを1つ選びなさい。					
(1)	_	意運動や思考などの精神活動の中枢はどこにあるか。 1			
	(1)	前頭葉			
	2	側頭葉			
	3	頭頂葉			
	4	後頭葉			
	5	辺縁葉			
(2)	平	新覚において,体の回転加速度を受容する器官はどれか。 2			
	1	コルチ器官			
	2	半規管			
	3	うずまき管			
	4	耳小骨			
	⑤	前庭			
(3)	血	糖値をおさえる機能をもつホルモンはどれか。 3			
	1	チロキシン			
	2	グルカゴン			
	3	セロトニン			
	4	インスリン			
	(5)	アドレナリン			

(4)	外	分泌腺でないのはどれか。 4
	\bigcirc	唾液腺
	2	乳腺
	3	汗 腺
	4	涙 腺
	⑤	甲状腺
(5)	分	類上において,造血器系に属する臓器はどれか。 5
	1	心臓
	2	ひ臓
	3	腎臓
	4	肺臓
	⑤	すい臓
(6)	^	モグロビンのもっとも重要な働きはどれか。 6
	1	栄養分を運ぶ。
	2	免疫反応に関与する。
	3	アンモニアを尿素に変える。
	4	酸素を運搬(うんぱん)する。
	⑤	血液を凝固させる働きに関与する。
(7)	ヒ	トの目において、光量調節を行う部位はどれか。 7
	1	角膜
	2	虹彩
	3	網膜
	4	毛様体
	⑤	ガラス体

- (8) 副交感神経のはたらきはどれか。 8
 - ① 心拍数を増やす。
 - ② 気管支をひろげる。
 - ③ 血圧を上げる。
 - 瞳孔(どうこう)を縮小させる。
 - り 胃腸管の蠕(ぜん)動を抑制させる。

【問3】各問いについて答えなさい。

(1)	RNA	につ	いて	1 ~	5 7	と <u>選</u>	<u>択肢</u> から1つ選びなさい。	
1)	アミ	ノ酸	が結合し	している	RNA			1
2))小胞体上に存在し,タンパク質を伴う RNA					2		
3))DNA から RNA が合成されること					3		
4)	りアミノ酸配列を特定する3個ずつの塩基					4		
5)	スフ	゚゚゚ライ	シング	でとり除	かれる R	NA		5
<u>選折</u>	<u>.肢</u>							
0	コー	ドン				0	mRNA	
2	ラト	ドン				8	rRNA	
3	合	成				9	tRNA	
4	転	写				0	shRNA	
⑤	複	製				(1)	エキソン	
6	翻	訳				12	イントロン	

選択肢

- ① 二重らせん
- ② αヘリックス
- ③ うずまき
- トリプトファン
- ⑤ システイン
- 6 セリン

- ⑦ 水酸基
- ⑧ リン酸基
- り カルボキシ基
- 0 サブユニット
- ⑪ ペプチド
- 🔞 ポリペプチド

(3) 次の文章中の 12 ~ 18 に入る語を <u>選択肢</u> から 1 つ選びなさい。
酵素が作用する物質を 12 といい、酵素反応によって作られた物質を
13 という。酵素は特定の 12 と反応する 14 という性質があり、
これはそれぞれの特有の立体構造を持つ 15 に適合した 12 だけが
結合して反応が起こることによる。
12 が 13 になるためにはエネルギーの高い反応しやすい状態にな
る必要がある。このエネルギーを 16 と呼ぶ。酵素があると、反応に必要
な 16 を 17 くすることができる。この酵素の性質を 18 と呼
\$\hat{s}_0

選択肢

- ① 高
- ② 低
- ③ 活性化エネルギー
- ② 定常エネルギー
- 5 基質特異性
- 6 最適温度

- ⑦ 競争阻害
- 8 触 媒
- 9 活性部位
- @ 複合体
- 1 生成物
- 10 基質

(4) 次の文章中の19~23に入る語を選択肢から1つ選びなさい。
体細胞分裂は、分裂の準備を行う 19 と細胞が2つに分かれる分裂期に
分けることができる。 19 には、DNA を複製する 20 があり、
20 を過ぎた後の DNA 量は分裂期まで元の 21 倍になる。この時の
DNA の複製方法を 22 と呼ぶ。分裂期はさらに前期,中期,後期,終期
に分けることができる。分裂期中期には染色体が 23 に集まることが観察
される。

選択肢

① G₀ 期

② G₁期

③ G₂ 期

④ S 期

⑤ 間期

6 縦列面

- 0 1.5
- **8** 2
- 9 4
- № 半保存的複製
- (1) 保存的複製
- № 赤道面

【問4】各問いについて答えなさい。							
(1) 下記の文を読み, 文中の $\boxed{1}$ \sim $\boxed{7}$ にあてはまる語句を <u>選択肢</u> 【1】							
~ [7	~【7】のそれぞれ $①$ ~ $①$ から 1 つ選びなさい。						
体液性免疫は免疫応答の一部で、血液やリンパ液の中に存在する抗体によっ							
て病原	原体や毒素など	を排除する仕組みであ	うる。B 細胞は体	液性免疫の主役であ			
ŋ, [1 で作られ	ている。一方, 抗体が	2 とも呼ば	ばれ, B 細胞が分化し			
て形成する形質細胞によって産生される 3 であり、計 4 がある。外							
敵が侵	是入した際,	5 は二次免疫応答の	D核となる存在で	, 5 が抗体を作			
るよう	B 細胞へ指示	を出したり、自らウ	イルス細胞を攻撃	としたりする働きをし			
ている	5。一方, 6	」は不活化ウイルス。	や抗原を投与し,	体液性免疫を活性化			
して	して 7 を形成するという治療原理に基づいてできた医学技術である。						
選択肢							
[1]	①骨 膜	② すい臓	③肝 臓	4 間			
[2]	① 免疫細胞	②免疫グロブリン	③ アルブミン	4 樹状細胞			
[3]	₫酵 素	②タンパク質	③ 脂 質	④ 糖 質			
[4]	①2 種類	②3 種類	③4 種類	④ 5 種類			
[5]	①T 細胞	②マクロファージ	③赤血球	4 血小板			
[6]	①抗体療法	②免疫療法	③薬物療法	④ ワクチン			

③抗原提示 ④先天性免疫

①免疫作用 ②免疫記憶

[7]

(2) 次の文章中の 8 ~ 10 に入る語句を <u>選択肢</u> から1つ選びなさい。							
ヒ	ヒトの血液は、全身を循環し、酸素や栄養素の運搬、老廃物の除去、免疫機能						
の提	供など, 生命維持において不可欠な	:役割	を果たす液体組織である。ヒトの血				
液量	:は体重の約 8 に相当する。血	L液は	主に液体成分である 9 と,細				
胞成	:分である 10 から構成されて	いる。					
							
<u>選折</u>	<u></u>						
0	血球	0	水分				
2	血栓	8	ビタミン				
3	血ペい	9	10~12%				
4	血しょう	(0)	7~8%				
⑤	血 糖	(1)	4~6%				
6	ブドウ糖	②	エネルギー				
(3)	次の文章中の 11 に入る語句	Jを <u>選</u>	<u>択肢</u> から1つ選びなさい。				
 心臓は,4 つの部屋(心房と心室)と弁から構成されている。心臓の拍動は,							
心筋の電気的刺激によって始まる。右心房にある 11 が心拍のペースを決							
定している。ここで発生した電気信号が心臓全体に伝わる。刺激伝導系という経							
路を通じて信号が心筋に伝わり、規則的な収縮と拡張を引き起こす。							
<u>選択肢</u>							
1	心筋細胞	4	アドレナリン				
2	筋節 (サルコメア)	⑤	洞房結節				
3	交感神経	6	副交感神経				

大阪物療大学 入試課

₹593-8324

大阪府堺市西区鳳東町 4-410-5

TEL: 072-260-0096

E-mail : nyushi@butsuryo.ac.jp