2024年度入試問題集(解答編)

保健医療学部 診療放射線技術学科

大阪物療大学 Butsuryo College of Osaka

目次

	頁
○推薦前期入試	
◇基礎学力検査(数学)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
◇基礎学力検査(生物)····································	5
○推薦後期入試	
◇基礎学力検査(数学)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
○一般前期入試	
◇筆記試験(数学 I·Ⅱ)·······	14
○一般中期入試	
◇筆記試験(数学)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18
◇筆記試験(生物)※基礎的な問題・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	23

数学 I

【問題1】解答欄

1.	$\{a(abd)^6c^3 + a^2(ab)^4c^7d^5\} \div (ad)^2(b^2c)^2$
	$= \frac{a^7b^6c^3d^6 + a^6b^4c^7d^5}{a^2b^4c^2d^2} = a^5b^2cd^4 + a^4c^5d^3 = a^4cd^3(ab^2d + c^4)$
	Ans. アイウエ
2.	$(3a - 2b)^2(2a - b)^2 + 28ab^3 + 24a^2b^2$
	$=(6a^2 - 7ab + 2b^2)^2 + 28ab^3 + 24a^2b^2$
	$=36a^4 + 49a^2b^2 + 4b^4 - 84a^3b - 28ab^3 + 24a^2b^2 + 28ab^3 +$
	$24a^2b^2$
	$=36a^4 + 97a^2b^2 + 4b^4 - 84a^3b$
	Ans. オカキクケコサ
3.	$\frac{5 - \frac{1}{2a}}{3 - \frac{2}{a}} + 2 = \frac{10a - 1}{6a - 4} + 2 = \frac{10a - 1 + 2(6a - 4)}{6a - 4}$
	$=\frac{22a-9}{2(3a-2)}$
	Ans. シスセソタ
4.	$\sqrt{\frac{15+10\sqrt{2}}{2}} = \left[\frac{2\sqrt{5}+\sqrt{10}}{2}\right]^2 = \frac{20+10+4\sqrt{50}}{4} = \frac{30+4\sqrt{50}}{4} = \frac{15+10\sqrt{2}}{2}$
	Ans. チツテトナ
5.	$\frac{4\sin 45^{\circ}}{2 - \sin 30^{\circ}} - \frac{4\sin 45^{\circ}}{2 + \sin 30^{\circ}}$
	$= 4\sin 45^{\circ} \frac{2 + \sin 30^{\circ} - 2 + \sin 30^{\circ}}{4 - \sin^2 30^{\circ}}$
	$= 4\sin 45^{\circ} \frac{2 \cdot \frac{1}{2}}{4 - \frac{1}{4}} = 4 \cdot \frac{1}{\sqrt{2}} \frac{4}{15} = \frac{8\sqrt{2}}{15}$
	Ans. ニヌネノ
6.	x = 6.75, $100x = 675.75$
	$99x = 669 x = \frac{669}{99} = \frac{223}{33}$
	Ans. ハヒフヘホ

ア	4
1	3
ウ	2
ı	4
オ	3
カ	6
+	9
ク	7
ケ	4
П	8
サ	4
シ	2
ス	2
セ	9
ソ	2
アイウェオカキクケコサシスセソタチツテトナニヌネ	4 3 2 4 3 6 9 7 4 8 4 2 2 9 2 2 2 5 1 0 2 8 2
チ	2
ツ	5
テ	1
۲	0
ナ	2
-	8
ヌ	2
ネ	1
1	5
/\	2
L	2
フ	3
^	3
ホ	3

数学 I

【問題2】解答欄

1.	$2x^2 + 11x - 4xy - 2y + 5$
	$= 2x^2 - (4y - 11)x - (2y - 5)$
	= (x - 2y + 5)(2x + 1)
	Ans. アイウエ
2.	$x^{2} + y^{2} + z^{2} = (x + y + z)^{2} - 2(xy + yz + zx)$
	$18 = (x + y + z)^2 + 6$
	$(x + y + z)^2 = 12$ $(x + y + z) = 2\sqrt{3}$
	Ans. オカ
	$x^{3} + y^{3} + z^{3} = (x + y + z)(x^{2} + y^{2} + z^{2} - (xy + yz + zx)) + 3xyz$
	$24\sqrt{3} = 2\sqrt{3}(18+3) + 3 \cdot xyz$
	$xyz = -6\sqrt{3}$
	Ans. キクケ
3.	$(\sin\theta + \cos\theta)^2 = 1 + 2\sin\theta\cos\theta$
	$\left \left[\frac{1+\sqrt{3}}{2} \right]^2 = 1 + 2\sin\theta\cos\theta$
	$\left[\frac{1}{2}\right] = 1 + 2 \sin \theta \cos \theta$
	$\frac{2+\sqrt{3}}{3} = 1 + 2\sin\theta\cos\theta \sin\theta\cos\theta = \frac{\sqrt{3}}{4}$ Ans. $\exists \forall$
	2 - 1 + 2 3 11 0 cos 0 - 3 11 0 cos 0 - 4
	$(\sin \theta - \cos \theta)^2 = 1 - 2\sin \theta \cos \theta = 1 - 2 \cdot \frac{\sqrt{3}}{4} = 1 - \frac{\sqrt{3}}{2} = \frac{2 - \sqrt{3}}{2}$
	$\sin \theta - \cos \theta = \sqrt{\frac{2-\sqrt{3}}{2}}$ Ans. シスセ
	$\sin^3\theta + \cos^3\theta = (\sin\theta + \cos\theta)(\sin^2\theta + \cos^2\theta - \sin\theta\cos\theta)$
	$= \frac{1+\sqrt{3}}{2} \left[1 - \frac{\sqrt{3}}{4} \right] = \frac{1+\sqrt{3}}{2} \frac{4-\sqrt{3}}{4} = \frac{1+3\sqrt{3}}{8}$
	Ans. ソタチツ
4.	判別式= $2k^2-2 \ge 0$ より $(k+1)(k-1) \ge 0$ で
	$k \le -1$ または $k \ge 1$ Ans. テトナ
	k=1 の時、重解 $x=1$ Ans. ニヌ
5.	$x^{2} - 1 = x \rightarrow x = \frac{1 \pm \sqrt{5}}{2}$ $-x^{2} + 1 = x \rightarrow x = \frac{-1 \pm \sqrt{5}}{2}$ Ans. ネノハ
	$-x^2 + 1 = x \to x = \frac{-1 \pm \sqrt{5}}{2}$ Ans. ネノハ

ア	2
1	5
ウ	2
エ	1
オ	2 5 2 1 2 3
カ	3
+	
ク	6
ケ	3
П	3
†	4
ふ	2
ス	3
セ	2
ソ	1
タ	3
チ	3
ツ	8
イウェオカキクケコサシスセソタチツテト	6 3 4 2 3 2 1 3 8 1
7	1
ナ	1
=	1
ナニヌ	1
ネノ	1 1 5 2
1	5
/\	2

数学 I

【問題3】解答欄

1.	$\frac{3\sqrt{2}}{\sin 60^{\circ}} = \frac{AC}{\sin 45^{\circ}} \sharp \mathcal{V} , AC = \frac{3\sin 45^{\circ}}{\sin 60^{\circ}} = \frac{3\sqrt{2}}{\frac{\sqrt{3}}{2}} \cdot \frac{1}{\sqrt{2}} = 2\sqrt{3}$		ア	
	311100 311111	. 7	1	
		Ans. ア	ウ	
	$2R = \frac{3\sqrt{2}}{\sin 60^{\circ}} = \frac{3\sqrt{2}}{\frac{\sqrt{3}}{2}} = 2\sqrt{6} \text{Ly}, R = \sqrt{6}$		エ	
	$\frac{\sin 60^{\circ}}{2}$		オ	
		Ans. イ	カキ	
2.	a c		ク	
	正弦定理より $\frac{a}{\sin A} = \frac{c}{\sin C}$ ①		ケ	
	問題の式より sinA = $\sqrt{7}$ sinC …②			
	①②より、 $a = \frac{\sin A}{\sin c}$ $c = \sqrt{7} \cdot c$	Ans. ウ	サ	
	Stite		シ	
	同様に $b = \sqrt{3} \cdot c$	Ans. エ	ス	
	$b^2 = a^2 + c^2 - 2ac\cos B$		セ	
	$3 = 7 + 1 - 2\sqrt{7}\cos B$, $\cos B = \frac{5}{2\sqrt{7}}$		ソ	
	247	Ans. オ	タ	
3.	$A = \{1,4,9\}, B = \{1,3,5,7,9,11\}, C = \{2,3,5,7,11\}$	71115. 73	チ	
		Ano +	ツ	
	A∩B∩C = 空集合	Ans. カ	テ	
	$A \cap (\overline{B \cup C}) = \{4\}$	Ans. +	+	
	$\overline{A} \cap \overline{B} \cap C = \{2\}$	Ans. ク	ナ	
4.	(1) 並べ替えると 233444556789 より 最頻値 4	Ans. サ		
	中央値 4.5	Ans. シス		
	平均 $\frac{2+6+12+10+6+7+8+9}{12} = 5.0$	Ans. セソ		
	四分位範囲 6.5 - 3.5 = 3	Ans. タ		
	(2) 平均が 5 より $\frac{3^2+2\times2^2+3\times1+1+2^2+3^2+4^2}{12} = \frac{25}{6}$	Ans. チツテ		
5.	求める濃度を a とする。(([(50a+10)/150]50+100a)/	7150)=0.17		
	(50a/3+10/3+100a)/150=0.17			
	350a/3+10/3=25.5, 350a=66.5, a=0.19	Ans. トナ		

数学 I

【問題4】解答欄

(1)	$y = 2\left(x - \frac{5}{2}a\right)^2 - \frac{25}{2}a^2 + 3$ 頂点 $\left(\frac{5}{2}a, -\frac{25a^2}{2} + 3\right)$
	Ans. アイ
	Ans. ウエオ
	頂点の座標を x,y とした式から a を消去すると $y = -2x^2 + 3$
	Ans. カキ
	$y = 0$ の解: $x = \frac{5}{2}a \pm \frac{1}{2}\sqrt{25a^2 - 6}$, 2 つの解の差: $\sqrt{25a^2 - 6}$
	Ans. クケコサ
(2)	放物線と直線の連立方程式は $x^2 - (5a+1)x + 3 = 0$
	接するので重解を持つ。よって判別式= $(5a+1)^2-12=0$
	より $a = \frac{-1 + 2\sqrt{3}}{5}$ $(a > 0 より)$
	Ans. シスセ
(3)	放物線と直線の連立方程式より $x(x-5a)=0$
	よって $x = 0.5a$
	Ans. ソタ
	この 2 点を結ぶ線分を底辺とすると、その長さは $l=5a$
	高さは、頂点と $y=3$ の y 座標の差より $h=\frac{25}{2}a^2$
	よって三角形の面積は $\frac{1}{2}lh = \frac{125}{4}a^3$
	Ans. チツテト
	三角形が第一象限および軸上にあるためには、放物線の頂点
	の y 座標について $-\frac{25a^2}{2} + 3 \ge 0$ より $a \le \frac{\sqrt{6}}{5}$
	Ans. ナニ
	直角三角形、正三角形になるとき、それぞれ
	_

ア	5
1	2
ウ	2
エ	5
オカ	2
カ	2
+	3
カ キ ク	2
ケ	5
コサ	2
サ	6
シ	2
ス	3
ヘセソ	5
ソ	0
タ	5
チ	1
ツ	2
テ	5
1	4
ナ	6
=	5
ヌ	1
ネ	5
1	3
/\	5

【問1】解答欄

1.	正しい記述は	4.	植物細胞はミトコンドリアをもつ。である。
2.	正しい記述は	3.	翻訳である。
3.	正しい記述は	5.	流動モザイクモデル である。
4.	正しい記述は	2.	ウラシル である。
5.	正しい記述は	1.	制限酵素 である。
6.	正しい記述は	3.	最適温度 である。
7.	正しい記述は	4.	細胞質基質 である。
8.	正しい記述は	4.	10 モル である。

1	4
2	3
3	5
4	2
5	1
6	3
7	4
8	4

【問2】解答欄

1.	血液の凝固によって生じた血餅(ぺい)が溶かされないことで,
	引き起こされる病気はどれか。5. 心筋梗塞 である。
2.	人体の小循環について、正しいのはどれか。
	2. 右心室→肺動脈→肺 胞→肺静脈→左心房 である。
3.	自律神経の働きやホルモン分泌の中枢はどこにあるか。
	4. 間 脳(視床下部)である。
4.	原尿量の計算に最も使われる物質はどれか。
	5. イヌリン である。
5.	凝固因子を産生する臓器はどれか。
	5. 肝 臓 である。
6.	血液に含まれる血小板の働きはどれか。5. 血液を凝固させる働き
	に関与する。である。
7.	食作用を行う大型の白血球はどれか。1. マクロファージ である。
8.	血液の低血糖をすい臓のランゲルハンス島の A 細胞で感知させて、
	そこから分泌されるホルモンとして最も正しいものはどれか。
	3. グルカゴン である。

5
2
4
5
5
5
1
3

【問3】解答欄

1.	1 細胞の両極に位置し、紡錘糸を伸ばした構造は 2. 星状体 である。	1	2
	2 染色体上にある紡錘糸が付着する部位は 11. 動原体 である。	2	11
	3 分裂中期で染色体が集合する中央の面は 6. 赤道面 である。	3	6
	4 くびれや細胞板形成などの細胞質分裂が始まる時期は 5. 終期 である。	4	5
	■ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	5	10
2.	多細胞生物のからだは様々な細胞で構成されているが、全て同じ遺伝情報を持ってい	6	3
	る。これは体細胞分裂の 6 3. S 期にもとの DNA と全く同じ DNA が複製されるから	8	$\frac{9}{12}$
	である。DNA の複製では、まず、DNA の二本鎖がほどけて塩基どうしの 7 9. 水素	9	11
	結合 が切れる。塩基の 7 9. 水素結合 は G-C 結合が 8 12. 3 対、A-T 結合が	10	5
		11	1
	9 11. 2 対形成される。一本鎖になったそれぞれのヌクレオチド鎖の塩基と 10 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12	7
	5. 相補的 な塩基を持つヌクレオチドが結合すると、 11 1. DNA ポリメラーゼ と 1. La	13	4
	よばれる酵素によって先に結合していたヌクレオチドと連結される。この結果、もとの	14	11
	DNA のヌクレオチド鎖と新しく作られたヌクレオチド鎖からなる二本鎖 DNA がつくられ	15	8
	る。このような DNA の複製方式は 12 7. 半保存的 複製とよばれている。	16	12
3.	タンパク質は 13 4. アミノ酸 が多数結合した分子である。そのため、タンパク質の	17	10
	性質はタンパク質を構成する 13 4. アミノ酸 の数や配列順序によって決まる。真核	18	12
	細胞では、タンパク質の細胞内の 14 11. リボソームで合成され, 14 11. リボ	19	3
	ソームが多数付着する粗面小胞体を移動した後、の 15 8. ゴルジ体 に移動する。	20	2
	15 8. ゴルジ体 は特定のタンパク質を細胞外に分泌する。泌時,細胞膜では 16	21	7
	12. エクソサイトーシスが生じる。また, 15 8. ゴルジ体 から生じた消化酵素を多	22	5
	く含む細胞小器官を 17 10. リソソーム という。	23	9
4.	ヒトは生きていくために,食物として有機物を取り込む。体内に取り込まれた有機物は		
	消化吸収された後、血液によって体中の細胞に送られる。そして、細胞に取り込まれた		
	有機物は、細胞質基質で分解された後、更に細胞小器官の 12. ミトコンドリア		
	で酵素を用いて無機物にまで分解される。このような反応は 19 3. 呼吸 と呼ば		
	れる。 19 3. 呼吸 は複雑な物質を簡単な物質に分解し、エネルギーが放出される		
	過程である 20 2. 異化 の一つである。 19 3. 呼吸 で放出されたエネルギー		
	は ATP に蓄えられ,残りは熱となって体温を維持する。ATP はリボースと呼ばれる糖		
	に, 21 7. アデニン と3つの 22 5. リン酸 が結合した物質でATP が ADP と		
	22 5. リン酸 に分解されると、エネルギーが放出される。このようにエネルギー		
	ーーー を提供したり蓄えたりできる ATP のことを 23 9. エネルギー通貨 という。		

【問4】解答欄

1.	腎臓は血液を 1 2. ろ過 し,不要な物質や老廃物を尿として体外に
	排泄する器官である。この過程で、2 1. 体液 のバランスを維持し、
	血圧や 3 2. 赤血球 生成にも関与する。尿の生成は、最初に血液が
	4 3. 腎小体 で 1 2. ろ過 され,その後 5 2. 細尿管 で
	再吸収や分泌が起こる。これにより、 2 1. 体液 の濃度や成分が調
	整され,血圧や電解質のバランスが維持される。最終的に、尿は尿道を通
	じて排出され、体内の毒素や余分な物質が除去される。腎臓は尿を生成す
	るだけでなく, $\boxed{6}$ 4. 活性ビタミン $^{ m D}$ を生成して骨の健康をサポー
	トし, 7 1. エリスロポエチン というホルモンを分泌して 3 2.
	赤血球 の生産を促進する。
2.	血液の中に含まれるグルコースのことを血糖という。血糖は、体にとっては燃料にあたる大切なものである。血糖は食事によって体の中に取り
	込まれる。
	食事で消化・吸収された血糖は、必要に応じて 8 3. 肝臓 で
	9 8. グリコーゲン として貯蔵され、血糖が不足したときには再びグルコースになって血液中に放出される。血糖は10 12. 脂肪 に
	変えられ, 10 12. 脂肪 組織などにも貯蔵される。
3.	11 4. 褐色脂肪組織 には自律神経や毛細血管が密に分布している。
	 動物実験では、ラットの皮膚が温度の低下を感知すると自律神経系が活動
	動物実験では、ラットの皮膚が温度の低下を感知すると自律神経系が活動し、 11 4. 褐色脂肪組織 の代謝が促進されることで、組織自体の温
	し, 11 4. 褐色脂肪組織 の代謝が促進されることで, 組織自体の温

1	2
2	1
3	2
4	3
5	2
6	4
7	1
8	3
9	8
10	12
11	4

【問題1】解答欄

1. $\frac{800 \times 5^2 \times 10^2 \times 100^2}{10^{22} \times (13^2 - 12^2)} = \frac{2^3 \times 10^2 \times 5^2 \times 10^2 \times 10^4}{10^{22} \times (13 + 2)(13 - 2)}$ $= \frac{2^3 \times 10^2 \times 5^2 \times 10^2 \times 10^4}{10^{22} \times 5^2} = \frac{2^3 \times 10^{2+2+4}}{10^{22}} = \frac{2^3}{10^{14}}$ Ans. $\mathcal{F}\mathcal{T}\mathcal{T}\mathcal{T}$ $= \frac{2(2a + b)^2(2a - 3b)^2 - (4ab - 3b^2)^2 - 41ab^3}{10^{24} \times 10^{24}} = \frac{2(4a^2 - 4ab - 3b^2) + (4ab - 3b^2)}{10^{24} \times 10^{24}} = \frac{2(4a^2 - 4ab - 3b^2) + (4ab - 3b^2) + (4ab - 3b^2)}{10^{24} \times 10^{24}} = \frac{2(4a^2 - 6b^2)(4a^2 - 8ab) - 41ab^3}{10^{24} \times 10^{24}} = \frac{2(4a^2 - 6b^2)(4a^2 - 8ab) - 41ab^3}{10^{24} \times 10^{24}} = \frac{10a + 1}{6a - 4} + 2 = \frac{10a + 1 + 2(6a - 4)}{6a - 4}$ $= \frac{22a - 7}{2(3a - 2)}$ Ans. $\mathcal{F}\mathcal{T}\mathcal{T}\mathcal{T}\mathcal{T}\mathcal{T}\mathcal{T}\mathcal{T}\mathcal{T}\mathcal{T}T$		7.C - 2 - 731 E- 1819		
	1.	$800 \times 5^2 \times 10^2 \times 100^2$ $2^3 \times 10^2 \times 5^2 \times 10^2 \times 10^4$	ア	2
		$\frac{10^{22} \times (13^2 - 12^2)}{10^{22} \times (13 + 2)(13 - 2)}$	1	3
		$2^3 \times 10^2 \times 5^2 \times 10^2 \times 10^4$ $2^3 \times 10^{2+2+4}$ 2^3	ウ	1
2. $(2a + b)^2(2a - 3b)^2 - (4ab - 3b^2)^2 - 41ab^3$ $= [(4a^2 - 4ab - 3b^2) + (4ab - 3b^2)][(4a^2 - 4ab - 3b^2) - (4ab - 3b^2)]$ $= (4a^2 - 6b^2)(4a^2 - 8ab) - 41ab^3$ $= 16a^4 - 32a^3b - 24a^2b^2 + 7ab^3$ Ans. $4\pi + 7\pi + $		$= \frac{10^{22} \times 5^2}{10^{22} \times 5^2} = \frac{10^{22}}{10^{14}}$	エ	4
$ = [(4a^2 - 4ab - 3b^2) + (4ab - 3b^2)][(4a^2 - 4ab - 3b^2) - (4ab - 3b^2)] $ $ = (4a^2 - 6b^2)(4a^2 - 8ab) - 41ab^3 $ $ = 16a^4 - 32a^3b - 24a^2b^2 + 7ab^3 $ Ans.		Ans. アイウエ	オ	1
$=(4a^{2}-6b^{2})(4a^{2}-8ab)-41ab^{3}$ $=16a^{4}-32a^{3}b-24a^{2}b^{2}+7ab^{3}$ Ans. オカキクケコサ $\frac{5+\frac{1}{2a}}{3-\frac{2}{a}}+2=\frac{10a+1}{6a-4}+2=\frac{10a+1+2(6a-4)}{6a-4}$ $=\frac{22a-7}{2(3a-2)}$ Ans. シスセソタ $\frac{4}{3}\cdot\sqrt{\frac{15-10\sqrt{2}}{2}}=\left[\frac{2\sqrt{5}-\sqrt{10}}{2}\right]^{2}=\frac{20+10-4\sqrt{50}}{4}=\frac{30-4\sqrt{50}}{4}=\frac{15-10\sqrt{2}}{2}$ Ans. チツテトナ $\frac{2\cos 45^{\circ}}{2-\sin 30^{\circ}}-\frac{2\sin 45^{\circ}}{2+\sin 30^{\circ}}$ $=\frac{2(2+\sin 30^{\circ})-2(2-\sin 30^{\circ})}{4-\sin^{2}30^{\circ}}\cdot\frac{\sqrt{2}}{2}$ $=\frac{2\cdot\frac{1}{2}}{4-\frac{1}{4}}\sqrt{2}=\frac{4\sqrt{2}}{15}$ Ans. ニヌネノ $\frac{2\cos 45^{\circ}}{4-\sin^{2}30^{\circ}}=\frac{4\sqrt{2}}{15}$ Ans. ニヌネノ $\frac{2\cos 45^{\circ}}{4-\sin^{2}30^{\circ}}=\frac{4\sqrt{2}}{15}$ Ans. ニヌネノ	2.	$(2a + b)^2(2a - 3b)^2 - (4ab - 3b^2)^2 - 41ab^3$	カ	6
		$=[(4a^2 - 4ab - 3b^2) + (4ab - 3b^2)][(4a^2 - 4ab - 3b^2) - (4ab - 3b^2)]$	+	3
$=16a^{4} - 32a^{3}b - 24a^{2}b^{2} + 7ab^{3}$ Ans. オカキクケコサ $\frac{5}{3} - \frac{1}{2a} + 2 = \frac{10a + 1}{6a - 4} + 2 = \frac{10a + 1 + 2(6a - 4)}{6a - 4}$ $= \frac{22a - 7}{2(3a - 2)}$ Ans. シスセソタ $\frac{4}{3} - \frac{15 - 10\sqrt{2}}{2} = \left[\frac{2\sqrt{5} - \sqrt{10}}{2}\right]^{2} = \frac{20 + 10 - 4\sqrt{50}}{4} = \frac{30 - 4\sqrt{50}}{4} = \frac{15 - 10\sqrt{2}}{2}$ Ans. チツテトナ $\frac{2\cos 45^{\circ}}{2 - \sin 30^{\circ}} - \frac{2\sin 45^{\circ}}{2 + \sin 30^{\circ}}$ $= \frac{2(2 + \sin 30^{\circ}) - 2(2 - \sin 30^{\circ})}{4 - \sin^{2} 30^{\circ}} \cdot \frac{\sqrt{2}}{2}$ $= \frac{2 \cdot \frac{1}{2}}{4 - \frac{1}{4}} \sqrt{2} = \frac{4\sqrt{2}}{15}$ Ans. ニヌネノ $\frac{2\cos 45^{\circ}}{4 - \sin^{2} 30^{\circ}} - \frac{2\sin 45^{\circ}}{2 + \sin 30^{\circ}} \cdot \frac{\sqrt{2}}{2}$ $= \frac{2 \cdot \frac{1}{2}}{4 - \frac{1}{4}} \sqrt{2} = \frac{4\sqrt{2}}{15}$ Ans. ニヌネノ $\frac{2\cos 45^{\circ}}{4 - \sin^{2} 30^{\circ}} - \frac{2\sin 45^{\circ}}{2 + \sin 30^{\circ}} \cdot \frac{\sqrt{2}}{2}$ $= \frac{2\cos 45^{\circ}}{4 - \sin^{2} 30^{\circ}} - \frac{2\sin 45^{\circ}}{2 + \sin 30^{\circ}} \cdot \frac{\sqrt{2}}{2}$ $= \frac{2 \cdot \frac{1}{2}}{4 - \frac{1}{4}} \sqrt{2} = \frac{4\sqrt{2}}{15}$ Ans. ニヌネノ		$-41ab^{3}$	ク	2
Ans. オカキクケコサ 3. $\frac{5 + \frac{1}{2a}}{3 - \frac{2}{a}} + 2 = \frac{10a + 1}{6a - 4} + 2 = \frac{10a + 1 + 2(6a - 4)}{6a - 4}$ $= \frac{22a - 7}{2(3a - 2)}$ Ans. シスセソタ 4. $\sqrt{\frac{15 - 10\sqrt{2}}{2}} = \left[\frac{2\sqrt{5} - \sqrt{10}}{2}\right]^2 = \frac{20 + 10 - 4\sqrt{50}}{4} = \frac{30 - 4\sqrt{50}}{4} = \frac{15 - 10\sqrt{2}}{2}$ Ans. チツテトナ 5. $\frac{2\cos 45^\circ}{2 - \sin 30^\circ} - \frac{2\sin 45^\circ}{2 + \sin 30^\circ}$ $= \frac{2(2 + \sin 30^\circ) - 2(2 - \sin 30^\circ)}{4 - \sin^2 30^\circ} \cdot \frac{\sqrt{2}}{2}$ $= \frac{2 \cdot \frac{1}{2}}{4 - \frac{1}{4}} \sqrt{2} = \frac{4\sqrt{2}}{15}$ Ans. $= \mathbb{Z} \times \mathbb{Z}$ $\frac{1}{2} \times$		$= (4a^2 - 6b^2)(4a^2 - 8ab) - 41ab^3$	ケ	2
3. $ \frac{5 + \frac{1}{2a}}{3 - \frac{2}{a}} + 2 = \frac{10a + 1}{6a - 4} + 2 = \frac{10a + 1 + 2(6a - 4)}{6a - 4} $ $ = \frac{22a - 7}{2(3a - 2)} $ Ans. $\Rightarrow \lambda \lambda \pm y \lambda \lambda \pm y \lambda \lambda \lambda \pm y \lambda \lambda \lambda \lambda \lambda \lambda \lambda$		$=16a^4 - 32a^3b - 24a^2b^2 + 7ab^3$	П	4
			サ	7
$ \begin{array}{c} $	3.	$5 + \frac{1}{2a}$ $10a + 1$ $10a + 1 + 2(6a - 4)$	シ	2
$ \begin{array}{c} $		$\frac{2a}{2} + 2 = \frac{6a - 4}{6a - 4} + 2 = \frac{6a - 4}{6a - 4}$	ス	2
Ans.		$3-\overline{a}$	セ	7
Ans.		$=\frac{22a-7}{2(a-2)}$	ソ	2
4. $\sqrt{\frac{15-10\sqrt{2}}{2}} = \left[\frac{2\sqrt{5}-\sqrt{10}}{2}\right]^{2} = \frac{20+10-4\sqrt{50}}{4} = \frac{30-4\sqrt{50}}{4} = \frac{15-10\sqrt{2}}{2}$ Ans. $\cancel{7}\cancel{7}\cancel{7}\cancel{7}\cancel{7}\cancel{7}$ 5. $\frac{2\cos 45^{\circ}}{2-\sin 30^{\circ}} - \frac{2\sin 45^{\circ}}{2+\sin 30^{\circ}}$ $= \frac{2(2+\sin 30^{\circ})-2(2-\sin 30^{\circ})}{4-\sin^{2} 30^{\circ}} \cdot \frac{\sqrt{2}}{2}$ $= \frac{2\cdot\frac{1}{2}}{4-\frac{1}{4}}\sqrt{2} = \frac{4\sqrt{2}}{15}$ Ans. $=\cancel{7}\cancel{7}\cancel{7}$ $6. 4.5 \dot{6} = 4.5 + 0.0 \dot{6} = \frac{9}{2} + r r = 0.0 \dot{6} 100r = 6. \dot{6}$ $99r = 6.6 r = \frac{66}{990} = \frac{11}{165}$			タ	2
$ \sqrt{\frac{15-10\sqrt{2}}{2}} = \left[\frac{2\sqrt{5-\sqrt{10}}}{2}\right] = \frac{20+10-4\sqrt{50}}{4} = \frac{30-4\sqrt{50}}{4} = \frac{15-10\sqrt{2}}{2} $ Ans. $\cancel{\pm}\cancel{y} + \cancel{+}\cancel{+}$ $ 5. \frac{2\cos 45^{\circ}}{2-\sin 30^{\circ}} - \frac{2\sin 45^{\circ}}{2+\sin 30^{\circ}} $ $ = \frac{2(2+\sin 30^{\circ}) - 2(2-\sin 30^{\circ})}{4-\sin^2 30^{\circ}} \cdot \frac{\sqrt{2}}{2} $ $ = \frac{2\cdot\frac{1}{2}}{4-\frac{1}{4}}\sqrt{2} = \frac{4\sqrt{2}}{15} $ Ans. $= \cancel{x} \cancel{x} \cancel{2}$ $ \cancel{\cancel{x}} \cancel{1} $ $ \cancel{\cancel{y}} \cancel{5} $ $ \cancel{\cancel{x}} \cancel{2} $ $ \cancel{\cancel{x}} \cancel{1} $ $ \cancel{\cancel{y}} \cancel{5} $ $ \cancel{\cancel{x}} \cancel{1} $ $ \cancel{\cancel{x}} \cancel{\cancel{y}} \cancel{$		Ans. シスセソタ	チ	2
Ans. $7 = 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + $	4.	$\int \frac{15-10\sqrt{2}}{2} = \left[\frac{2\sqrt{5}-\sqrt{10}}{2}\right]^2 = \frac{20+10-4\sqrt{50}}{2} = \frac{30-4\sqrt{50}}{2} = \frac{15-10\sqrt{2}}{2}$	ツ	5
5. $ \frac{2\cos 45^{\circ}}{2 - \sin 30^{\circ}} - \frac{2\sin 45^{\circ}}{2 + \sin 30^{\circ}} $ $ = \frac{2(2 + \sin 30^{\circ}) - 2(2 - \sin 30^{\circ})}{4 - \sin^{2} 30^{\circ}} \cdot \frac{\sqrt{2}}{2} $ $ = \frac{2 \cdot \frac{1}{2}}{4 - \frac{1}{4}} \sqrt{2} = \frac{4\sqrt{2}}{15} $ Ans. $= \mathbb{R} \stackrel{?}{\times} \cancel{1}$ $ \downarrow \qquad \qquad$, 2	テ	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_		7	0
$= \frac{2(2 + \sin 30^{\circ}) - 2(2 - \sin 30^{\circ})}{4 - \sin^{2} 30^{\circ}} \cdot \frac{\sqrt{2}}{2}$ $= \frac{2 \cdot \frac{1}{2}}{4 - \frac{1}{4}} \sqrt{2} = \frac{4\sqrt{2}}{15}$ $6. 4.5\dot{6} = 4.5 + 0.0\dot{6} = \frac{9}{2} + r r = 0.0\dot{6} 100r = 6.\dot{6}$ $99r = 6.6 r = \frac{66}{990} = \frac{11}{165}$	5.		ナ	2
		<u>_</u>	=	4
		$= \frac{2(2+\sin 30^\circ) - 2(2-\sin 30^\circ)}{4\sin^2 30^\circ} \cdot \frac{\sqrt{2}}{2}$	ヌ	2
Ans. $= ヌネノ$		1 3111 30	ネ	1
Ans. $= ヌネノ$		$=\frac{2\cdot\frac{1}{2}}{\sqrt{2}}\sqrt{2}=\frac{4\sqrt{2}}{\sqrt{2}}$	1	5
$4.5\dot{6} = 4.5 + 0.0\dot{6} = \frac{9}{2} + r r = 0.0\dot{6} 100r = 6.\dot{6}$ $99r = 6.6 r = \frac{66}{990} = \frac{11}{165}$		$4 - \frac{1}{4}$ 15	/\	1
$4.5\dot{6} = 4.5 + 0.0\dot{6} = \frac{9}{2} + r r = 0.0\dot{6} 100r = 6.\dot{6}$ $99r = 6.6 r = \frac{66}{990} = \frac{11}{165}$		Ans. ニヌネノ	۲	3
$99r = 6.6 r = \frac{66}{990} = \frac{11}{165}$	6.	9	フ	7
$99r = 6.6 r = \frac{66}{990} = \frac{11}{165}$		$4.5\dot{6} = 4.5 + 0.0\dot{6} = \frac{5}{2} + r$ $r = 0.0\dot{6}$ $100r = 6.\dot{6}$	^	3
			木	0
Ans. Ars. Ars.		$99r = 6.6 r = \frac{33}{990} = \frac{11}{165}$		
Alls. ALZTA		Ans. ハヒフへホ		

【問題2】解答欄

1.	$2x^2 + 9x - 4xy + 2y - 5$	ア	2
	$= 2x^2 - (4y - 9)x + 2y - 5$	1	5
	= (x - 2y + 5)(2x - 1)	ゥ	2
	Ans. アイウエ	エ	1
2.	$x^{2} + y^{2} + z^{2} = (x + y + z)^{2} - 2(xy + yz + zx)$	オ	2
	$12 = (x + y + z)^2 - 2 \times (-2)$	カ	2
	$(x+y+z)^2 = 8$	+	_
	$x + y + z = 2\sqrt{2}$	ク	4
	Ans. オカ	ケ	2
	$x^{3} + y^{3} + z^{3} = (x + y + z)\langle x^{2} + y^{2} + z^{2} - (xy + yz + zx)\rangle + 3xyz$	П	3
	$16\sqrt{2} = \left(2\sqrt{2}\right)\langle 12 - (-2)\rangle + 3xyz$	サ	4
	$3xyz = 16\sqrt{2} - 28\sqrt{2}$	シ	1
	$xyz = -4\sqrt{2}$	ス	3
	Ans. キクケ	セ	2
3.	$1 + \tan \theta = \frac{3}{3} + \frac{\sqrt{3}}{3}$ $\xi \theta \tan \theta = \frac{\sqrt{3}}{3} = \frac{1}{\sqrt{3}}$	ソ	1
	3 3 √3	タ	3
	$\theta = 30^{\circ} \text$	チ	3
	2 2 1	ッ	8
	Ans. コサ	テ	1
	$\sin\theta - \cos\theta = \frac{1 - \sqrt{3}}{2}$	7	_
	_	ナニ	1
	Ans. シスセ	=	1
	$\sin^3 \theta + \cos^3 \theta = \left(\frac{1}{2}\right)^3 + \left(\frac{\sqrt{3}}{2}\right)^3 = \frac{1 + 3\sqrt{3}}{8}$	ヌ	1
	(2) (2) o Ans. ソタチツ	ネ	1
4.	判別式= $(2k)^2 - 2(k^2 + 1) \ge 0$ より $2k^2 - 2 \ge 0$ で	1	5
4.	$k \ge 1$ または $k \le -1$ Ans. テトナ	/\	2
	k=1 の時、重解 $x=-1$ Ans. ニヌ		
5.			
J.	$x^2 - 1 = x \to x = \frac{1 \pm \sqrt{5}}{2}$		
	$-x^2 + 1 = x \to x = \frac{-1 \pm \sqrt{5}}{2}$		
	Ans. ネノハ		

【問題3】解答欄

1.	余弦定理から	cosA —	$6^2+7^2-3^2$	76 _	1 9
	赤仏に生がり	cosh —	2 • 6 • 7	2 • 6 • 7	21

$$\sin A > 0$$
 であるから、 $\sin A = \sqrt{1 - \cos^2 A} = \sqrt{1 - \left(\frac{19}{21}\right)^2}$

$$= \sqrt{\frac{80}{441}} = \frac{4\sqrt{5}}{21}$$

$$S = \frac{1}{2} \cdot bcsinA = \frac{1}{2} \cdot 6 \cdot 7 \cdot \frac{4\sqrt{5}}{21} = 4\sqrt{5}$$

4
5
1
2
5
1
1

Ans. アイ

正弦定理より $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ から

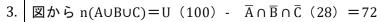
a : b : c = sinA : sinB : sinC

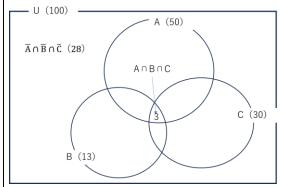
条件から sinA: sinB: sinC = 5:8:7

よって、a:b:c=5:8:7 ゆえに a=5k, b=8k, c=7k (k>0)とおける b>c>a であるから、 $\angle B>\angle C>\angle A$ よって、 $\angle C$ が 2 番目に大きい 内角である。余弦定理により

$$\cos C = \frac{(5k)^2 + (8k)^2 - (7k)^2}{2 \cdot 5k \cdot 8k} = \frac{40k^2}{80k^2} = \frac{1}{2}$$

Ans. ウエ


$$\cos A = \frac{(7k)^2 + (8k)^2 - (5k)^2}{2 \cdot 7k \cdot 8k} = \frac{88k^2}{112k^2} = \frac{11}{14}$$


$$tan^{2}A = \frac{1}{cos^{2}A} - 1 = \left(\frac{11}{14}\right)^{2} - 1 = \frac{14^{2} - 11^{2}}{11^{2}} = \frac{5^{2} \cdot 3}{11^{2}}$$

A<90 度 より、tanA>0 であるから

$$tanA = \sqrt{\frac{5^2 \cdot 3}{11^2}} = \frac{5\sqrt{3}}{11}$$

Ans. オカキ

① $n (A \cap B) = n (A) + n (B) + n (C) - n (A \cup B \cup C) - n (A \cap C) - n (B \cap C) + n (A \cap B \cap C)$

$$=50+13+30-72-9-10+3=5$$

Ans. ク

ケ

シ

ス

セ

ッテ

ナ

1

4

5

6

3

6

1

0

 $2 n (B) - n (A \cap B) - n (B \cap C) + n (A \cap B \cap C)$

=13-5-10+3=1

Ans. ケ

③
$$n (B \cap C) - n (A \cap B \cap C) = 10 - 3 = 7$$

Ans. ⊐

4. (1) 並べ替えると 3344 4567791010より 最頻値 4 Ans. サ

中央値 5.5

Ans. シス

平均
$$\frac{3+3+12+11+14+9+20}{12} = 6.0$$

Ans. セソ

四分位範囲 8-4=4

Ans. タ

(2) 平均が 6 より分散は $\frac{2 \cdot 3^2 + 3 \times 2^2 + 1 + 2 + 3^2 + 2 \cdot 4^2}{12} = \frac{37}{6}$

標準偏差は $\sqrt{\frac{37}{6}}$

Ans. チツテ

5. 求める濃度は

 $((50 \times 0.12 + 100 \times 0.03) / 150 \times 50 + 100 \times 0.12)$ $/150 = ((6+3) \cdot 50 / 150 + 12) / 150 =$

(3+12) /150=0.1 = 10%

Ans. トナ

【問題4】解答欄

-	
(1)	$y = 3\left(x - \frac{a+1}{6}\right)^2 + \frac{-a^2 - 2a + 11}{12}$. 頂点 $\left(\frac{a+1}{6}, \frac{-a^2 - 2a + 11}{12}\right)$
	Ans. アイ
	Ans. ウエオ
	もとの方程式の x を $-(x-3)$ に置き換えて整理すると、
	$y = 3x^2 + (a - 17)x - 3a + 25.$
	Ans. カキ
	Ans. クケコサ
(2)	もとの放物線の方程式で判別式が正より
(2)	$(a+1)^2-4\cdot3>0$, また $a>0$ より $a>-1+2\sqrt{3}$
	Ans. シスセ
	このとき x の解は $x = \frac{a+1}{6} \pm \frac{\sqrt{a^2+2a-11}}{6}$
	この 2 点を結ぶ水平な線分を底辺 l とすると $l = \frac{\sqrt{a^2 + 2a - 11}}{3}$
	高さ h は $0-(頂点のy座標)$ より $h=\frac{a^2+2a-11}{12}$
	面積は $s = \frac{1}{2}lh = \frac{(a^2 + 2a - 11)^{\frac{3}{2}}}{72}$
	Ans. ソ
	Ans. チツテト
(3)	放物線と直線の方程式を連立して整理すると
	$3x^2 - (a+2) - a + 1 = 0$
	これの判別式 $(a+2)^2-4\cdot 3(-a+1)=a^2+16a-8=0$
	$a > 0$ の解は $a = -8 + 6\sqrt{2}$
	$Ans. T = \begin{bmatrix} u & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$
	この a を代入して x,y を解けば接点が求まる。解は
	$(x,y) = (-1 + \sqrt{2}, -9 + 7\sqrt{2})$
	Ans. ヌネノハ

ア	1
1	6
ゥ	2
エ	1
オ	1
カ	3
+	1
ク	7
ケ	3
ウェオカキクケコサシスセソ	2
サ	5
シ	1
ス	2
セ	3
ソ	2
タ	1
チ	1
ツ	3
テ	7
7	2
ソタチツテトナニ	6
	2
ヌ	1
ネ	6 2 1 1 3 1 7 3 2 5 1 2 3 2 1 1 3 7 2 6 2 1 2 9 7
ノ	9
/\	7

【問題1】解答欄

1. $(3a+b) \times (3a+2b) + 4b^2 = 9a^2 + 9ab + 6b^2$ Ans. アイウ 2. 103 乗根の複素共役なので $\frac{-1-i\sqrt{3}}{2}$ Ans. エオカ 3. $1-\frac{a-2}{2a-\frac{1}{a}}=1-\frac{a^2-2a}{2a^2-1}=\frac{2a^2-1-(a^2-2a)}{2a^2-1}=\frac{a^2+2a-1}{2a^2-1}$ Ans. キクケ 4. $ 7\sqrt{3}-3\sqrt{7}-(2\sqrt{3}-\sqrt{7}) = 5\sqrt{3}-2\sqrt{7} =5\sqrt{3}-2\sqrt{7}$ Ans. コサ 5. $\log_3 \frac{4}{7} \cdot \log_5 5^{-\frac{3}{5}} + \log_3 \frac{4}{7} - \log_5 5^{-\frac{2}{5}}$ $=\frac{4}{7} \cdot \left(-\frac{3}{5}\right) + \frac{4}{7} + \frac{2}{5} = \frac{22}{35}$ Ans. シスセソ 6. $\left(\frac{32}{243}\right)^{\frac{1}{5}} + \left(\frac{343}{8}\right)^{-\frac{1}{3}} = \frac{2}{3} + \frac{2}{7} = \frac{20}{21}$ Ans. タチツテ 7. $\frac{\cos(-\frac{2\pi}{3})}{\sin(\frac{\pi}{4})} + \frac{\tan(\frac{\pi}{4})}{\cos(-\frac{5\pi}{6})} = \frac{-\frac{1}{2}}{\frac{1}{\sqrt{2}}} + \frac{1}{\frac{\sqrt{3}}{2}} = \frac{-\sqrt{2}}{2} - \frac{2}{\sqrt{3}} = -\frac{4\sqrt{3}+3\sqrt{2}}{6}$ Y 2 3 4 5 4 6 5 6 7 1 1 5 7 1 1 5 7 1 1 5 7 1 1 5 7 1 1 5 7 1 1 1 5 7 1 1 1 1				
2. 103 乗根の複素共役なので $\frac{-1-i\sqrt{3}}{2}$ Ans. エオカ $\frac{1}{2}$ $\frac{-1}{2a^2-1}$ $-$	1.	$(3a + b) \times (3a + 2b) + 4b^2 = 9a^2 + 9ab + 6b^2$	ア	3
1 の 3 乗根の複素共役なので $\frac{-1-i\sqrt{3}}{2}$ Ans. エオカ $\frac{1}{2}$ $\frac{-1-i\sqrt{3}}{2}$ Ans. エオカ $\frac{1}{2}$ $\frac{-1-i\sqrt{3}}{2}$ Ans. エオカ $\frac{1}{2}$ $\frac{-1-i\sqrt{3}}{2}$ Ans. エオカ $\frac{1}{2}$ $\frac{-1-i\sqrt{3}}{2a^2-1}$ $\frac{1}{2a^2-1}$ $\frac{1}{2a^2-1}$ $\frac{1}{2a^2-1}$ $\frac{1}{2a^2-1}$ Ans. キクケ $\frac{1}{2a^2-1}$ $\frac{1}{2a^2-1}$ $\frac{1}{2a^2-1}$ $\frac{1}{2a^2-1}$ $\frac{1}{2a^2-1}$ $\frac{1}{2a^2-1}$ $\frac{1}{2a^2-1}$ Ans. キクケ $\frac{1}{2a^2-1}$ $\frac{1}{2a^2-1}$ $\frac{1}{2a^2-1}$ $\frac{1}{2a^2-1}$ $\frac{1}{2a^2-1}$ $\frac{1}{2a^2-1}$ $\frac{1}{2a^2-1}$ Ans. $\frac{1}{2}$ $\frac{1}{2a^2-1}$ $\frac{1}{2a^2-1$		Ans. アイウ	1	2
3. $1 - \frac{a-2}{2a - \frac{1}{a}} = 1 - \frac{a^2 - 2a}{2a^2 - 1} = \frac{2a^2 - 1 - (a^2 - 2a)}{2a^2 - 1} = \frac{a^2 + 2a - 1}{2a^2 - 1}$ $Ans. \pm 77$ 4. $ 7\sqrt{3} - 3\sqrt{7} - (2\sqrt{3} - \sqrt{7}) = 5\sqrt{3} - 2\sqrt{7} = 5\sqrt{3} - 2\sqrt{7}$ $Ans. \Rightarrow 7$ 5. $\log_3 3^{\frac{4}{7}} \cdot \log_5 5^{-\frac{3}{5}} + \log_3 3^{\frac{4}{7}} - \log_5 5^{-\frac{2}{5}}$ $= \frac{4}{7} \cdot \left(-\frac{3}{5}\right) + \frac{4}{7} + \frac{2}{5} = \frac{22}{35}$ $Ans. \Rightarrow 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2$	2.	$-1-i\sqrt{3}$	ウ	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 0 3 乗根の複素共役なので ——— Ans. エオカ	エ	_
Ans. ± 77 4. $ 7\sqrt{3} - 3\sqrt{7} - (2\sqrt{3} - \sqrt{7}) = 5\sqrt{3} - 2\sqrt{7} = 5\sqrt{3} - 2\sqrt{7}$ Ans. $\Rightarrow 7$ Ans. $\Rightarrow 7$ 5. $ \log_3 3^{\frac{4}{7}} \cdot \log_5 5^{-\frac{3}{5}} + \log_3 3^{\frac{4}{7}} - \log_5 5^{-\frac{2}{5}} $ $= \frac{4}{7} \cdot \left(-\frac{3}{5}\right) + \frac{4}{7} + \frac{2}{5} = \frac{22}{35}$ Ans. $\Rightarrow 2 \times 2$ $\Rightarrow 2$ $\Rightarrow 2$ Ans. $\Rightarrow 2 \times 2$ $\Rightarrow 3$ $\Rightarrow 3$ $\Rightarrow 4$ $\Rightarrow 3$ $\Rightarrow 4$	3.	$1 - \frac{a-2}{2} - 1 - \frac{a^2-2a}{2} - \frac{2a^2-1-(a^2-2a)}{2} - \frac{a^2+2a-1}{2}$	オ	1
4. $ 7\sqrt{3} - 3\sqrt{7} - (2\sqrt{3} - \sqrt{7}) = 5\sqrt{3} - 2\sqrt{7} = 5\sqrt{3} - 2\sqrt{7}$ Ans. $ 7\sqrt{3} - 3\sqrt{7} - (2\sqrt{3} - \sqrt{7}) = 5\sqrt{3} - 2\sqrt{7} = 5\sqrt{3} - 2\sqrt{7}$ Ans. $ 7\sqrt{3} - 3\sqrt{7} - (2\sqrt{3} - \sqrt{7}) = 5\sqrt{3} - 2\sqrt{7} = 5\sqrt{3} - 2\sqrt{7}$ Ans. $ 7\sqrt{3} - 3\sqrt{7} - (2\sqrt{3} - \sqrt{7}) = 5\sqrt{3} - 2\sqrt{7} = 5\sqrt{3} - 2\sqrt{7}$ $ 7\sqrt{3} - 3\sqrt{7} - (2\sqrt{3} - \sqrt{7}) = 5\sqrt{3} - 2\sqrt{7} = 5\sqrt{3} - 2\sqrt{7}$ $ 7\sqrt{3} - 2\sqrt{3} - (1) + 7\sqrt{3} - 2\sqrt{3} = $		$1 - \frac{1}{2a - \frac{1}{a}} - 1 - \frac{1}{2a^2 - 1} - \frac{1}{2a^2 - 1} - \frac{1}{2a^2 - 1}$	カ	3
5. $\log_{3} 3^{\frac{4}{7}} \cdot \log_{5} 5^{-\frac{3}{5}} + \log_{3} 3^{\frac{4}{7}} - \log_{5} 5^{-\frac{2}{5}}$ $= \frac{4}{7} \cdot \left(-\frac{3}{5}\right) + \frac{4}{7} + \frac{2}{5} = \frac{22}{35}$ Ans. $\Rightarrow x \neq y$ 6. $\left(\frac{32}{243}\right)^{\frac{1}{5}} + \left(\frac{343}{8}\right)^{-\frac{1}{3}} = \frac{2}{3} + \frac{2}{7} = \frac{20}{21}$ Ans. $\Rightarrow x \neq y \neq z$ 7. $\frac{\cos(-\frac{2\pi}{3})}{\sin(\frac{\pi}{4})} + \frac{\tan(\frac{\pi}{4})}{\cos(-\frac{5\pi}{6})} = \frac{-\frac{1}{2}}{\frac{1}{\sqrt{2}}} + \frac{1}{\frac{\sqrt{3}}{-2}} = \frac{-\sqrt{2}}{2} - \frac{2}{\sqrt{3}} = -\frac{4\sqrt{3} + 3\sqrt{2}}{6}$ Ans. $\Rightarrow x \neq y \neq z$ $= 4 \cdot (3x^{2} + 6x + 7)$ Ans. $\Rightarrow x \neq z \neq z$		Ans. キクケ	+	2
5. $\log_{3} 3^{\frac{4}{7}} \cdot \log_{5} 5^{-\frac{3}{5}} + \log_{3} 3^{\frac{4}{7}} - \log_{5} 5^{-\frac{2}{5}}$ $= \frac{4}{7} \cdot \left(-\frac{3}{5}\right) + \frac{4}{7} + \frac{2}{5} = \frac{22}{35}$ $6. \left(\frac{32}{243}\right)^{\frac{1}{5}} + \left(\frac{343}{8}\right)^{-\frac{1}{3}} = \frac{2}{3} + \frac{2}{7} = \frac{20}{21}$ $7. \frac{\cos(-\frac{2\pi}{3})}{\sin(\frac{\pi}{4})} + \frac{\tan(\frac{\pi}{4})}{\cos(-\frac{5\pi}{6})} = \frac{-\frac{1}{2}}{\frac{1}{\sqrt{2}}} + \frac{1}{\frac{\sqrt{3}}{-2}} = \frac{-\sqrt{2}}{2} - \frac{2}{\sqrt{3}} = -\frac{4\sqrt{3} + 3\sqrt{2}}{6}$ $8. (x+3)^{3} - (x-1)^{3} = ((x+3) - (x-1))((x+3)^{2} + (x+3)(x-1) + (x-1)^{2}) = 4 \cdot (3x^{2} + 6x + 7)$ Ans. $7 \neq 3$ $= 6 = 3 \neq 4$	4.	$ 7\sqrt{3} - 3\sqrt{7} - (2\sqrt{3} - \sqrt{7}) = 5\sqrt{3} - 2\sqrt{7} = 5\sqrt{3} - 2\sqrt{7}$	ク	1
$\log_{3} 3^{\frac{1}{7}} \cdot \log_{5} 5^{-\frac{5}{5}} + \log_{3} 3^{\frac{1}{7}} - \log_{5} 5^{-\frac{5}{5}}$ $= \frac{4}{7} \cdot \left(-\frac{3}{5}\right) + \frac{4}{7} + \frac{2}{5} = \frac{22}{35}$ $6. \left(\frac{32}{243}\right)^{\frac{1}{5}} + \left(\frac{343}{8}\right)^{-\frac{1}{3}} = \frac{2}{3} + \frac{2}{7} = \frac{20}{21}$ $7. \frac{\cos(-\frac{2\pi}{3})}{\sin(\frac{\pi}{4})} + \frac{\tan(\frac{\pi}{4})}{\cos(-\frac{5\pi}{6})} = \frac{-\frac{1}{2}}{\frac{1}{\sqrt{2}}} + \frac{1}{\frac{\sqrt{3}}{2}} = -\frac{\sqrt{2}}{2} - \frac{2}{\sqrt{3}} = -\frac{4\sqrt{3} + 3\sqrt{2}}{6}$ $8. (x + 3)^{3} - (x - 1)^{3}$ $= ((x + 3) - (x - 1))((x + 3)^{2} + (x + 3)(x - 1) + (x - 1)^{2})$ $= 4 \cdot (3x^{2} + 6x + 7)$ $Ans. 7^{\frac{1}{2}}$ $= \frac{6}{3}$ $= \frac{3}{4}$		Ans. コサ	ケ	2
$= \frac{4}{7} \cdot \left(-\frac{3}{5}\right) + \frac{4}{7} + \frac{2}{5} = \frac{22}{35}$ Ans. $\Rightarrow x \neq y$ $= \frac{4}{7} \cdot \left(-\frac{3}{5}\right) + \frac{4}{7} + \frac{2}{5} = \frac{22}{35}$ $\frac{6}{6} \cdot \left(\frac{32}{243}\right)^{\frac{1}{5}} + \left(\frac{343}{8}\right)^{-\frac{1}{3}} = \frac{2}{3} + \frac{2}{7} = \frac{20}{21}$ Ans. $\Rightarrow x \neq y \neq z$ $\frac{7}{7} \cdot \frac{\cos(-\frac{2\pi}{3})}{\sin(\frac{\pi}{4})} + \frac{\tan(\frac{\pi}{4})}{\cos(-\frac{5\pi}{6})} = \frac{\frac{1}{2}}{\frac{1}{\sqrt{2}}} + \frac{1}{\frac{\sqrt{3}}{-2}} = \frac{-\sqrt{2}}{2} - \frac{2}{\sqrt{3}} = -\frac{4\sqrt{3} + 3\sqrt{2}}{6}$ Ans. $\Rightarrow x \neq z$ $\frac{7}{7} \cdot \frac{2}{3} = \frac{2}{3} + \frac{2}{7} = \frac{20}{21}$ Ans. $\Rightarrow x \neq z$ $\frac{7}{7} \cdot \frac{2}{3} = \frac{2}{3} + \frac{2}{7} = \frac{20}{21}$ Ans. $\Rightarrow x \neq z$ $\frac{7}{7} \cdot \frac{2}{3} = \frac{2}{3} + \frac{2}{7} = \frac{20}{21}$ Ans. $\Rightarrow x \neq z$	5.	$\frac{4}{25}$ $\frac{3}{100}$ $\frac{4}{25}$ $\frac{2}{100}$ $\frac{2}{100}$	П	5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\log_3 3^7 \cdot \log_5 5 + \log_3 3^7 - \log_5 5$	サ	2
Ans. $\sqrt[3]{2}$ Ans.		$=\frac{4}{1}\cdot\left(-\frac{3}{1}\right)+\frac{4}{1}+\frac{2}{1}=\frac{22}{1}$	シ	2
6. $ \left(\frac{32}{243}\right)^{\frac{1}{5}} + \left(\frac{343}{8}\right)^{-\frac{1}{3}} = \frac{2}{3} + \frac{2}{7} = \frac{20}{21} $ Ans. $\cancel{9} \ne \cancel{9} \ne 0$ $ 7. \frac{\cos(-\frac{2\pi}{3})}{\sin(\frac{\pi}{4})} + \frac{\tan(\frac{\pi}{4})}{\cos(-\frac{5\pi}{6})} = \frac{-\frac{1}{2}}{\frac{1}{\sqrt{2}}} + \frac{1}{\frac{\sqrt{3}}{-2}} = \frac{-\sqrt{2}}{2} - \frac{2}{\sqrt{3}} = -\frac{4\sqrt{3} + 3\sqrt{2}}{6} $ Ans. $\cancel{5} \ne 0$ $ \cancel{9} = 2$ $ \cancel{7} = 1$ $ \cancel{8} = ((x+3)^3 - (x-1)^3)$ $ = ((x+3) - (x-1))((x+3)^2 + (x+3)(x-1) + (x-1)^2)$ $ = 4 \cdot (3x^2 + 6x + 7) $ Ans. $\cancel{7} \ne 0$ $ \cancel{7} = 6$ $ \cancel{7} $		7 (0/ 7 0 00	ス	2
Ans. $ 9 \pm 9 \pm 9 $ 7. $ \frac{\cos(-\frac{2\pi}{3})}{\sin(\frac{\pi}{4})} + \frac{\tan(\frac{\pi}{4})}{\cos(-\frac{5\pi}{6})} = \frac{-\frac{1}{2}}{\frac{1}{\sqrt{2}}} + \frac{1}{\frac{\sqrt{3}}{2}} = \frac{-\sqrt{2}}{2} - \frac{2}{\sqrt{3}} = -\frac{4\sqrt{3}+3\sqrt{2}}{6} $ Ans. $ + \pm = \frac{\pi}{4} $ 8. $ (x+3)^3 - (x-1)^3 = ((x+3) - (x-1))((x+3)^2 + (x+3)(x-1) + (x-1)^2) = 4 \cdot (3x^2 + 6x + 7) $ Ans. $ 7 \pm \frac{2}{5} $ $ \pm \frac{3}{5} $		Ans. シスセソ	セ	3
Ans. $ 9 \pm 9 \pm 9 $ 7. $ \frac{\cos(-\frac{2\pi}{3})}{\sin(\frac{\pi}{4})} + \frac{\tan(\frac{\pi}{4})}{\cos(-\frac{5\pi}{6})} = \frac{-\frac{1}{2}}{\frac{1}{\sqrt{2}}} + \frac{1}{\frac{\sqrt{3}}{2}} = \frac{-\sqrt{2}}{2} - \frac{2}{\sqrt{3}} = -\frac{4\sqrt{3}+3\sqrt{2}}{6} $ Ans. $ + \pm = \frac{\pi}{4} $ 8. $ (x+3)^3 - (x-1)^3 = ((x+3) - (x-1))((x+3)^2 + (x+3)(x-1) + (x-1)^2) = 4 \cdot (3x^2 + 6x + 7) $ Ans. $ 7 \pm \frac{2}{5} $ $ \pm \frac{3}{5} $	6.	$(32)^{\frac{1}{5}}$ $(343)^{-\frac{1}{3}}$ 2 2 20	ソ	5
7. $\frac{\cos(-\frac{2\pi}{3})}{\sin(\frac{\pi}{4})} + \frac{\tan(\frac{\pi}{4})}{\cos(-\frac{5\pi}{6})} = \frac{-\frac{1}{2}}{\frac{1}{\sqrt{2}}} + \frac{1}{\frac{\sqrt{3}}{-2}} = \frac{-\sqrt{2}}{2} - \frac{2}{\sqrt{3}} = -\frac{4\sqrt{3}+3\sqrt{2}}{6}$ $-\frac{2\pi}{3} + \frac{1}{2\pi} + \frac{1}{$		$\left(\frac{1}{243}\right) + \left(\frac{1}{8}\right) = \frac{1}{3} + \frac{1}{7} = \frac{1}{21}$	タ	2
8. $(x+3)^3 - (x-1)^3$ = $((x+3) - (x-1))((x+3)^2 + (x+3)(x-1) + (x-1)^2)$ = $4 \cdot (3x^2 + 6x + 7)$ Ans. $7 \neq 3$ = 6 7 = 6 7 = 6 7 = 6			チ	0
8. $(x+3)^3 - (x-1)^3$ = $((x+3) - (x-1))((x+3)^2 + (x+3)(x-1) + (x-1)^2)$ = $4 \cdot (3x^2 + 6x + 7)$ Ans. $7 \neq 3$ = 6 7 = 6 7 = 6 7 = 6	7.	$\frac{\cos\left(-\frac{2\pi}{3}\right)}{\left(\frac{\pi}{3}\right)} + \frac{\tan\left(\frac{\pi}{4}\right)}{\left(-\frac{5\pi}{3}\right)} = \frac{-\frac{1}{2}}{1} + \frac{1}{\sqrt{3}} = \frac{-\sqrt{2}}{2} - \frac{2}{\sqrt{3}} = -\frac{4\sqrt{3}+3\sqrt{2}}{3}$	ツ	2
8. $(x+3)^3 - (x-1)^3$ $= ((x+3) - (x-1))((x+3)^2 + (x+3)(x-1) + (x-1)^2)$ $= 4 \cdot (3x^2 + 6x + 7)$ Ans. 73		- <u>-</u> 2	テ	1
$= ((x+3) - (x-1))((x+3)^2 + (x+3)(x-1) + (x-1)^2)$ $= 4 \cdot (3x^2 + 6x + 7)$ $= 4 \cdot (3x^2 + 6x + 7)$ Ans $\forall x = 4$			<u>۲</u>	4
$= 4 \cdot (3x^2 + 6x + 7)$ Ans \Rightarrow	8.		ナ	3
$\Delta_{\rm ns}$ \vec{z} $\vec{\lambda}$		· ·	=	6
Ans. ヌネ ネ 7			ヌ	4
l l		Ans. ヌネ	ネ	7

【問題2】解答欄

1.	$-(x^2 - x - 2) = x$ の解は $x = \pm \sqrt{2}$	ア	2
	$(x^2 - x - 2) = x$ の解は $x = 1 \pm \sqrt{3}$	1	1
	Ans. アイウ	ゥ	3
2.	$(\pi + 2)x - (5\pi - 3)y - 5 = 0 x - 5y = 0$	I	2
	$(x - 5y)\pi + 2x + 3y - 5 = 0 2x + 3y - 5 = 0$	オ	5
	$x = \frac{25}{13}, \qquad y = \frac{5}{13}$	カ	1
	13' y = 13	+	3
	Ans. エオカキクケコ	ク	5
3.	$x^3 - 8 = 0$	ケ	1
	$(x-2)(x^2+2x+4) = 0$	コ	3
	x = 2	サ	_
	$x = -1 \pm \sqrt{1^2 - 4} = -1 \pm i\sqrt{3}$	シス	1
	Ans. サシス	ス	3
4.	$f(x) = (x+1)^4$	セ	4
	$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = f'(x) = 4(x+1)^3$	ソ	1
	10	タチ	3
	Ans. セソタ	チ	1
5.	$= \int_{1}^{3} (u^{2} + u) \frac{dx}{du} du = \frac{1}{2} \int_{1}^{3} (u^{2} + u) du = \frac{1}{2} \left \frac{1}{3} u^{3} + \frac{1}{2} u^{2} \right _{1}^{3}$	ツ	9
	1	テ	3
	$= \frac{1}{2} \left[\frac{1}{3} (3^3 - 1^3) + \frac{1}{2} (3^2 - 1^2) \right] = \frac{1}{2} \left[\frac{26}{3} + \frac{8}{2} \right] = \frac{19}{3}$	テ ト ナ -	1
	Ans. チツテ	ナ	0
6.		=	0
	B: $20\% \div 4 = 5\%$		
	$\frac{0.2x + 0.05 \times 300}{x + 300} = 0.0875$		
	x = 100		
	Ans. トナニ		

【問題3】解答欄

				1
1.	(1)	0.8 × 0.8 × 0.8 × 0.8 × 0.8 =0.32768 Ans. アイウ	ア	3
	(2)	$N_0 \cdot \left(\frac{4}{5}\right)^n \le N_0 \times 0.01 = N_0 \times \frac{1}{102}$	1	2
		$N_0 \cdot (\frac{1}{5}) \ge N_0 \times 0.01 = N_0 \times \frac{10^2}{10^2}$	ウ	8
		Ans. エオカ	エ	1
		$\log_{10}\left(\frac{4}{5}\right)^n \le \log_{10}10^{-2} \text{n}(\log_{10}4 - \log_{10}5) \le -2$	オ	0
			カ	2
		$n \le -2/(log_{10}4 - log_{10}5)$	+	2
		$=-2 \div (0.602 - 0.699) = 20.6$ Ans. ± 5	ク	1
2.	(1)	一辺が a の正三角形の面積は $\frac{1}{2}a^2$ ・ $sin60$ $^\circ$ $=\frac{\sqrt{3}}{4}a^2$	ケ	3
			⊐	2
		$S=\frac{\sqrt{3}}{2}a^2+3ah$ Ans. ケコサ	サ	3
		2	シ	3
		体積 $V = \frac{\sqrt{3}}{4} a^2 \times h$ Ans. シ	ス	3
		4	セ	2
	(2)	(1)から $h=\frac{2S-\sqrt{3}a^2}{6a}$	ソ	3
		ou .	タ	2
		よって、 $V = \frac{\sqrt{3}}{4} a^2 \times \frac{2S - \sqrt{3}a^2}{6a} = \frac{a\sqrt{3}(2S - \sqrt{3}a^2)}{24}$	チ	3
		+ 0u 24	ツ	3
	(2)	Ans. スセソ	テ	3
	(3)		٢	0
		$0 < a < \sqrt{\frac{2S}{\sqrt{3}}} = \frac{\sqrt{2S}}{\sqrt[4]{3}} =$ Ans. $9 \ne$	ナ	6
	(4)	V V S	_=_	5
	(4)	$V = -\frac{3a^3}{24} + \frac{\sqrt{3}aS}{12}$ よって、 $V' = -\frac{9}{24}a^2 + \frac{S\sqrt{3}}{12}$ よって	ヌ	4
		$0 < a < \sqrt{\frac{2s}{9}\sqrt{3}}$ 即 $5 \circ 0 < a < \frac{\sqrt{2s}}{3} \cdot \sqrt[4]{3}$ で 増加し、 $a = \frac{\sqrt{2s}}{3} \cdot \sqrt[4]{3}$		
		で 極大となる。 Ans. ツテト		
	(5)			
		$V=\frac{a\sqrt{3}(2S-\sqrt{3}a^2)}{24}$ に $a=\frac{\sqrt{2S}}{3}\cdot\sqrt[4]{3}$ を代入		
		$V = \frac{1}{24} \cdot \frac{\sqrt{2S}}{3} \cdot \sqrt[4]{3} \cdot \sqrt{3} \left(2S - \sqrt{3} \cdot \frac{2S\sqrt{3}}{9}\right) = \frac{1}{24} \cdot \frac{\sqrt{2S}}{3} \cdot \sqrt[4]{3} \cdot \frac{4S}{3}$		
		$\frac{\sqrt{3}\sqrt{2S}\sqrt[4]{3} \cdot S}{54} = \frac{\sqrt{6S^{3}}\sqrt[4]{3}}{54}$ Ans. $+ = \times$		
L	1	1		

【問題4】解答欄

(1)	$y = -3x^2 + 6x + 9 = -3(x - 1)^2 + 12$
	頂点の座標は(1, 12)
	Ans. アイウ
(2)	$y = -3x^2 + 6x + 9 = -3(x+1)(x-3) $ $\downarrow b$
	x 軸との交点は (-1,0),(3,0).これらの点における接線
	の交点は、放物線の対称性より軸上にあるはずなので、
	一方の点 $(-1,0)$ からの接線だけ求めると,傾き $y'(-1)=12$ で
	(-1,0)を通る直線の方程式 $y=12(x+1)$. 放物線の軸上即ち
	x=1 を代入すると $y=24$ より答は $(1,24)$
	Ans. エオカ
(3)	$\int_{-1}^{3} (-3x^2 + 6x + 9)dx = 32$
	Ans. キク
(4)	放物線と直線の方程式を連立して解くと, x の2つの解の差が切
	り取る直線の長さとなることから
	$\frac{2}{3}\sqrt{36 - 3a} = 1 \text{\downarrow 9} a = \frac{45}{4}$
	Ans. ケコサ
(5)	放物線の方程式の x を $-x-1$ に y を $-y$ に置き換えて
	整理すると $y = 3x^2 + 12x$ Ans. シスセ

【問題1】解答欄

1.	$900 \times 5^2 \times 10^2 \times 100^2$ $9 \times 10^2 \times 5^2 \times 10^2 \times 10^4$ 5^2	ア	5
1.	$\frac{900 \times 5^2 \times 10^2 \times 100^2}{10^{22} \times (5^2 - 4^2)} = \frac{9 \times 10^2 \times 5^2 \times 10^2 \times 10^4}{10^{22} \times 3^2} = \frac{5^2}{10^{14}}$	1	2
		ウ	
	Ans. アイウエ		1
2.	$= [(4a^2 - 8ab + 3b^2) + (8ab + 3b^2)][(4a^2 - 8ab + 3b^2)$	프	4
	$-(8ab+3b^2)]+60a^3b+41ab^3$	<u>オ</u>	1
	$= (4a^2 + 6b^2)(4a^2 - 16ab) + 60a^3b + 41ab^3$	カキ	6
	$= (16a^4 - 64a^3b + 24a^2b^2 - 96ab^3) + 60a^3b + 41ab^3$		
	$= 16a^4 - 4a^3b + 24a^2b^2 - 55ab^3$	ク	2
	Ans. オカキクケコサ	ケ	4
3.	$= \frac{10a+1}{6a-4} - 2 = \frac{10a+1-2(6a-4)}{6a-4}$	⊐	5
	-6a-4 $6a-4$	サ	5
	$=\frac{-2a+9}{2(3a-2)}$	シ	_
	-2(3a-2)	ス	2
	Ans. シスセソタ	セ	9
4.	$\left \frac{30}{4} + 5\sqrt{2} \right = \frac{30 + 4 \cdot 5\sqrt{2}}{4} = \frac{20 + 10 + 4\sqrt{5 \cdot 5 \cdot 2}}{4} = \left[\frac{2\sqrt{5} + \sqrt{10}}{2} \right]^{2}$	ソ	2
	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	タ	2
	Ans. チツテトナ	チ	2
5.	$\frac{\sin 45^{\circ}}{\sin 60^{\circ}} + \frac{\tan 30^{\circ}}{\cos 30^{\circ}} = \frac{2}{\sqrt{3}} \frac{1}{\sqrt{2}} + \frac{2}{\sqrt{3}} \frac{1}{\sqrt{3}} = \frac{2}{\sqrt{6}} + \frac{2}{3} = \frac{6 + 2\sqrt{6}}{3\sqrt{6}} = \frac{\sqrt{6 + 2}}{3}$	ッ	5
		テ	1
	$\frac{3}{\sqrt{6}+2} = \frac{3(\sqrt{6}-2)}{2}$	-	0
	$\sqrt{6} + 2 - 2$	ナ	2
	Ans. ニヌネノ	=	3
6.	$1000x = 1883.\dot{3} \ 100x = 188.\dot{3} \ 900x = 1695 \ x = \frac{113}{60}$	ヌ	6
	1000x = 1003.3 100x = 100.3 700x = 1073 x = 60	ネ	2
	Ans. ハヒフヘホ	1	2
		/\	1
		<u></u>	1
		7	3
		_	6
		-	
		ホ	0

【問題2】解答欄

	起 4】 胜合惻
1.	$2x^2 + 9x - 7xy + 6y^2 - 13y - 5$
	$=2x^2 + (9-7y)x + (3y+1)(2y-5)$
	=(x-2y+5)(2x-3y-1)
	Ans. アイウエ
2.	$x^{2} + y^{2} + z^{2} = (x + y + z)^{2} - 2(xy + yz + zx)$
	$18 = (x + y + z)^2 - 2 \times (-3)$
	$x + y + z = 2\sqrt{3}$
	Ans. オカ
	$x^{3} + y^{3} + z^{3} = (x + y + z)\{x^{2} + y^{2} + z^{2} - (xy + yz + zx)\} + 3xyz$
	$24\sqrt{3} = 2\sqrt{3} \times (18 - (-3)) + 3xyz$
	$3xyz = -6\sqrt{3}$
	Ans. キクケ
3.	2 $\sqrt{3}$ 1
	$1 + \tan \theta = \frac{2}{\sqrt{3} - 1} = 1 + \sqrt{3} \rightarrow \sin \theta = \frac{\sqrt{3}}{2} \cos \theta = \frac{1}{2}$
	1/2
	$\sin\theta\cos\theta = \frac{\sqrt{3}}{4}$
	Ans. コサ
	$\sqrt{3} - 1$
	$\sin\theta - \cos\theta = \frac{\sqrt{3} - 1}{2}$
	Ans. シスセ
	$\sin^3 \theta + \cos^3 \theta = \left(\frac{\sqrt{3}}{2}\right)^3 + \left(\frac{1}{2}\right)^3 = \frac{1 + 3\sqrt{3}}{8}$
	Ans. ソタチツ
4.	必ず実数解を持つには判別式: $a^2 - k^2(a+40) \ge 0$
	「 $-(a+40) \ge 0$ 且つ $a^2 \ge 0$ よって $a \le -40$
	Ans. テトナ
	$a = -40$ のとき $-40^2 > 0$ なので、この x に関する 2 次方程式の
	解の個数は 2 個であり、方程式は $x(k^2x + 80) = 0$ となり $x = 0$
	Ans. $ \vec{x} $
5.	
	$x^{2} - 1 = x \to x = \frac{1 \pm \sqrt{5}}{2}$ $-x^{2} + 1 = x \to x = \frac{-1 \pm \sqrt{5}}{2}$
	1 1 / -
	$-x^2 + 1 = x \to x = \frac{-1 \pm \sqrt{5}}{2}$
	<u> </u>

【問題3】解答欄

1.	$\frac{BC}{\sin 60^{\circ}} = \frac{AC}{\sin 45^{\circ}} \sharp \flat , AC = \frac{BC \sin 45^{\circ}}{\sin 60^{\circ}} = \frac{BC}{\frac{\sqrt{3}}{2}} \cdot \frac{1}{\sqrt{2}} = \frac{2BC}{\sqrt{6}} = 2 \cdot 2\sqrt{3}$	$\overline{8}/\sqrt{6}$	ア	3
	2		イ	6
	$=2 \cdot 2\sqrt{3} \cdot \frac{\sqrt{6}}{6} = 2\sqrt{3}$	Ans. ア	ゥ	7
			エ	3
	$2R = \frac{3\sqrt{2}}{\sin 60^{\circ}} = \frac{3\sqrt{2}}{\frac{\sqrt{3}}{2}} = \frac{6\sqrt{2}\sqrt{3}}{3} = 2\sqrt{6} \text{Ly}, R = \sqrt{6}$	Ans. イ	オ	1
2			カ	5
2.	$\frac{b}{\sin B} = \frac{c}{\sin C}, b = \sqrt{3} \ c = \sqrt{3} \cdot \sqrt{21} = 3\sqrt{7}$	Ans. ウ	+	0
			ク	9
	$\frac{a}{\sin A} = \frac{c}{\sin C}, a = \sqrt{7}c = \sqrt{7} \cdot \sqrt{21} = 7\sqrt{3}$	Ans. I	ケ	2
	$a^2 = b^2 + c^2 - 2bc \cos A$		□	9
	$a^{2} = b^{2} + c^{2} - 2bc \cos A$ $147 = 63 + 21 - 2 \cdot 3\sqrt{7} \cdot \sqrt{21} \cos A$		サ	4
			シ	3
	$\cos A = -\frac{147 - 84}{42\sqrt{3}} = -\frac{63}{42\sqrt{3}} = -\frac{\sqrt{3}}{2}, A = 150$	Ans. オカキ	ス	5
3.	$A = \{1,2,3,4,6,12\}, B = \{1,3,5,7,9,11\}, C = \{2,3,5,7,11\}$		セ	3
0.			ソ	3
	$B \cap \overline{A \cup C} = \{9\}$	Ans. ク	タ	2
	$A \cap C \cap \overline{B} = \{2\}$	Ans. ケ	チ	2
	$A \cup C = \{1, 2, 3, 4, 5, 6, 7, 11, 12\}$	Ans. ⊐	ツ	1
4.	(1) 並べ替えると 1122344457 より 最頻値 4	Ans. サ	テ	2
			۲	1
	中央値 3.5	Ans. シス	ナ	8
	平均 $\frac{2+4+3+12+5+7}{10} = 3.3$	Ans. セソ		
	四分位範囲 4-2=2	Ans. タ		
	(2) $x = \frac{1+1+2+2+3+4+4+4+a+b}{10} = \frac{21+a+b}{10}$	Ans. チツ		
	$\sigma^2 = \overline{x^2} - \overline{x}^2 = \frac{1 + 1 + 4 + 4 + 9 + 3 \cdot 16 + a^2 + b^2}{10} - \frac{1}{10}$			
	$=\frac{67+a^2+b^2}{10}-\frac{a^2+b^2+441+2ab+42b+1}{100}$	+ 42 <i>a</i>		

$$=\frac{229+9a^2+9b^2-2ab-42b-42a}{100}$$

$$=\frac{9a^2-2a(b+21)+b(9b-42)+229}{100}$$

Ans. テ

5 A の濃度を 3x、B の濃度をxと置く。

$$\frac{200 \cdot 3x + 100x}{300} = 0.14$$

$$700x = 42$$
 , $x = \frac{42}{700} = \frac{6}{100} = 0.06 = 6\%$

よって A の濃度は3x=18%

Ans. トナ

【問題4】解答欄

(1)	$y = -\left(x - \frac{3}{2}\right)^2 + \frac{13}{4} + a$ 頂点 $\left(\frac{3}{2}, \frac{13}{4} + a\right)$
	Ans. アイウエオ
	カキ = d とおく。もとの放物線上の点を x,y ,
	移動後の 放物線上の点を x',y' とすると、
	$x' = -(x + d), \ y' = -y \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	これをもとの放物線の式に代入して整理し、x',y' をあらた
	めて x,y とすると、 $y = x^2 + (2d+3)x - a - 1 + d^2 + 3d$
	これを移動後の式と等置して $2d+3=-1$ より $d=-2$
	Ans. カキ
(2)	放物線と直線の方程式を連立して、 $x^2 - 2x = 0$ より $x = 0,2$
	Ans. クケ
	切り取る線分の x 軸上への投影の長さは $2-0=2$ 線分は
	x 軸に対して 45 度の角度をもつので、その長さは $2\sqrt{2}$
	Ans. コサ
(3)	もとの放物線の方程式で $y=0$ としたときの判別式
	$3^2 - 4(-1)(a+1) = 4a + 13 > 0 \ \ \ \ \ a > -\frac{13}{4}$
	Ans. シスセ
	交点の座標は、 $y = 0$ の解より $\frac{-3\pm\sqrt{4a+13}}{-2} = \frac{3\pm\sqrt{4a+13}}{2}$ 2 つの
	交点間の距離 $\sqrt{4a+13}$ が x 軸から切り取る線分の長さ
	Ans. ソタ
	この線分を底辺、頂点の y 座標 $\frac{13}{4} + a$ を高さとする
	三角形の面積 $s = \left(\sqrt{a + \frac{13}{4}}\right)^3$

ア	3
1	2
ゥ	1
エ	3
ウェオカキ	4
カ	-
+	2
ク	0
ケ	2
コサシ	2 2 2 1 3
サ	2
	1
ス	3
セソ	4
ソ	1
タチッ	3
チ	1
ツ	3
テ	4
۲	3
ナ	3
=	3 1 9
ヌ	9
ネ	3
7	2
/\	3

(4) 両曲線の方程式を連立して整理すると $(x^2 - a)(x - 3) = 0$ より x = 3 はつねに解。そのとき y = a + 1

Ans. ナニ

a > 0 のとき $x = 3, \pm \sqrt{a}$ が解となるので、a = 9 のとき解は 3, -3 の 2 つ、それ以外では 3 つとなる。

Ans. ヌネノハ

Ans. チツテト

【問1】解答欄

1.	正しい記述は 4. mRNA を合成する。である。	
2.	正しい記述は 5. tRNA は特定のアミノ酸結合部位を持つ。 である。	
3.	正しい記述は 3. 加工, 濃縮, 分泌を行う。 である。	
4.	正しい記述は 2.212 本である。	
	$639 \div 3 - 1 = 212$ (終止コドンはアミノ酸無し)	
5.	正しい記述は 5.5'-UUGCGACU-3' である。	
6.	正しい記述は 1.1つの遺伝子から2種類以上のタンパク質が作られる	
	ことがある。 である。	
7.	正しい記述は 4.8モル である。	
	$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$	
	グルコースが 4 モルの時、 $C_2H_5OH(アルコール)$ は $4 \times 2 = 8$ (モル)	
8.	正しい記述は 5.M期 である。	

1	4
2	5
3	3
4	2
5	5
6	1
7	4
8	5

【問2】解答欄

1.	中脳より出ている、副交感神経線維が含む脳神経はどれか。
	2. 動眼神経である。
2.	人体の体(大)循環について、正しいのはどれか。
	4. 左心室→大動脈→動脈→毛細血管→静脈→大静脈→右心房 で
	ある。
3.	肝機能について,誤っているのはどれか。
	5. 塩類濃度の調節 である。
4.	酵素が触媒する化学反応において,反応速度が最大となる pH を
	「最適 pH」といい,胃液の中のペプシンの酵素活性が最も高くな
	るときの最適 pH の値はどれか。1.2前後 である。
5.	凝固因子であるフィブリンを産生する臓器はどれか。
	4. 肝 臓 である。
6.	横紋筋であるのはどれか。1. 心筋 である。
7.	移植された他人の皮膚や臓器に対して、体内のあるリンパ球が直接
	攻撃し、細胞の破壊などを行い脱落させる反応は拒絶反応という。
	このリンパ球はどれか。3. T細胞 である。
8.	雄の第二次性徴の発現に最も寄与するホルモンはどれか。
	1. テストステロン である。

1	2
2	4
3	5
4	1
5	4
6	1
7	3
8	1

【問3】解答欄

1.	1 細胞質基質で行われる呼吸は1.解糖系である。	1
	2 酸化的リン酸化によって ATP を産生する過程は 3. 電子伝達系である。	2
	3 グルコース 1 分子が無酸素条件で産生する ATP 収支量は 7. 2ATP である。	3
	4 グルコース 1 分子が有酸素条件で産生する最大 ATP は 10. 38ATP である。	4
	5 グルコース1分子からできる水分子は6. 12H₂O である	$\frac{5}{2}$
2.	一一 元の DNA と全く同じ塩基配列を持つ DNA の複製は、元の 2 本のヌクレオチド鎖がそ	$\frac{6}{7}$
	 れぞれ鋳型鎖となって相補的な塩基配列を持つヌクレオチド鎖がつくられる。この	8
	複製様式を 6 7. 半保存的複製という。2本のヌクレオチド鎖は複製起点から	9
	7 12. DNA ヘリカーゼとよばれる酵素によって 1 本のヌクレオチド鎖にわか	10
	 れ,	11
	■ 	12
	るため,元の2本の DNA のうち片方は伸張方向が逆になって短い新生 DNA 断片がた	13
	くさんできる。この短い断片のことを 9 2. 岡崎フラグメントという。ま	14
	た, このように 9 2. 岡崎フラグメントがつくられながら不連続に複製され	15
	る新生鎖を 10 5. ラギング鎖という。 9 2. 岡崎フラグメントは	16
	11 11. DNA リガーゼによって連続な 1 本の鎖につながれる。	18
3.	タンパク質はアミノ酸共通の構造である酸性の 12 3. カルボキシ基とアルカ	19
	リ性の 13 2. アミノ基が 14 7. ペプチド結合して多数連なり 15	20
	9. 一次構造を形成する。 15 9. 一次構造は、らせん状やシート上の構造を形	21
		22
	どアミノ酸側鎖同士で相互作用して複雑な 17 11. 三次構造をとって機能す	23
	る。また,2つ以上の 17 11. 三次構造でさらに立体構造をつくることがあり,	
	この時の構造を 18 12. 四次構造という。 18 12. 四次構造を構成する	
	それぞれの 17 11. 三次構造を 19 8. サブユニットと呼ぶ。 18 12.	
	四次構造の例として 20 5. ヘモグロビンがある。	
4.	生体膜は 21 4. リン脂質の二重層からできており、その中に様々なタンパク	
	質が配置されている。このタンパク質は生体膜を自由に移動できる。このような生	
	体膜の構造を 22 12. 流動モザイクモデルと呼ぶ。また、生体膜のタンパク	
	質には膜内外に物質を輸送するものがある。細胞膜を例とすると、濃度勾配に逆ら	
	The state of the s	
	│ うためエネルギーを使って Na イオンレ K イオンを交換すストうか │ 22 │ O ポ	
	うためエネルギーを使って Na イオンと K イオンを交換するような 23 9. ポンプとよばれる機能をもつものもある。	

【問4】解答欄

1.	ヒトの体液は血液、組織液、リンパ液に分けられる。体液は、							
	健常成人男性の場合,体重の 1 3.60% を占めている。血							
	液は,通常,体重の約 2 4.13 分の1の比率を占めている。							
	正常な血液は, 3. 弱アルカリ性を示す。血液の主成分の1							
	つである赤血球は 4 4. 骨髄 でつくられ, 肝臓や 5 2.							
	脾臓 で破壊される。その寿命は約 6 2. 120 日である。赤							
	血球の数について、健常成人女子では、血液 1mm3 あたり約 7							
	3. 4,500,000 個が存在する。							
2.	液性免疫は、体液性免疫とも呼ばれ、体液に含まれる物質が関与							
	することから、このような名前が付けられた。これは、87. 抗							
	体 を介さない 9 10. 細胞性免疫 とは対照的である。 8							
	7. 抗 体 のエフェクター (有効化) 機能として,病原体や毒素の							
	中和・古典的補体の活性化・ 10 9. オプソニン による食作用							
	や病原体排除の促進作用がある。							
3.	クエン酸回路は, 11 4. ミトコンドリア のマトリックスで							
	行われる。ピルビン酸は 11 4. ミトコンドリア に入りクエ							
	ン酸となる。ピルビン酸2分子あたり、二酸化炭素6分子・アデノ							
	シン三リン酸 2分子・20水素 [H] ができ,直接は酸素を使用しな							
	い反応である。							

1	3		
2	4		
3	3		
4	4		
5	2		
6	2		
7	3		
8	7		
9	10		
10	9		
11	4		

大阪物療大学 入試課

₹593-8324

大阪府堺市西区鳳東町 4-410-5

TEL: 072-260-0096

E-mail : nyushi@butsuryo.ac.jp